
MATHEMATICS FOR MACHINE
LEARNING

Mohamed Aazi

A Comprehensive Guide to Building
Mathematical Foundations for AI

and Data Science

PART 1 : Beginner level

MATHEMATICS FOR

MACHINE LEARNING

A Comprehensive Guide to Building Mathematical

Foundations for AI and Data Science

Part 1 : Beginner level

Par : Mohamed AAZI

1

SECTION 1 : LINEAR ALGEBRA

Vector Addition

u+ v =


u1

u2

...

un

+


v1

v2
...

vn

 =


u1 + v1

u2 + v2
...

un + vn



Explanation: Vector addition combines two vectors component-wise.

It is commonly used in machine learning for gradient updates or geometric

vector operations.

Example: If u =

1
2

 and v =

3
4

, then u+ v =

4
6

.

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4])

result = u + v

2

Scalar Multiplication of a Vector

αv = α


v1

v2
...

vn

 =


αv1

αv2
...

αvn



Explanation: Scalar multiplication scales each component of a vector

by the same scalar. It is used in scaling gradients or controlling vector

magnitudes.

Example: If α = 3 and v =

 2

−1

, then αv =

 6

−3

.

Implementation:

import numpy as np

alpha = 3

v = np.array([2, -1])

result = alpha * v

3

Dot Product

u · v =
n∑

i=1

uivi = u1v1 + u2v2 + · · ·+ unvn

Explanation: The dot product calculates a scalar representing the

magnitude of projection of one vector onto another. It is widely used in

ML for similarity measures or linear operations.

Example: If u =

1
2

 and v =

3
4

, then u · v = 1 · 3 + 2 · 4 = 11.

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4])

result = np.dot(u, v)

4

Cross Product (3D)

u× v =

∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣

Explanation: The cross product generates a vector perpendicular to

two input vectors in 3D space. It is commonly used in physics and computer

graphics.

Example: If u =


1

0

0

 and v =


0

1

0

, then u× v =


0

0

1

.

Implementation:

import numpy as np

u = np.array([1, 0, 0])

v = np.array([0, 1, 0])

result = np.cross(u, v)

5

Norm of a Vector (Euclidean)

∥v∥ =

√√√√ n∑
i=1

v2i =
√

v21 + v22 + · · ·+ v2n

Explanation: The Euclidean norm measures the magnitude (length)

of a vector. It is useful in optimization and distance computations in ML.

Example: If v =

3
4

, then ∥v∥ = √32 + 42 = 5.

Implementation:

import numpy as np

v = np.array([3, 4])

result = np.linalg.norm(v)

6

Orthogonality Condition

u · v = 0

Explanation: Two vectors are orthogonal if their dot product is zero.

This condition is critical in linear algebra and ML for understanding inde-

pendence and basis construction.

Example: If u =

1
2

 and v =

−2
1

, then u · v = 1 · −2 + 2 · 1 = 0,

confirming orthogonality.

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([-2, 1])

result = np.dot(u, v)

is_orthogonal = result == 0

7

Matrix Addition

A+B =

a11 a12

a21 a22

+

b11 b12

b21 b22

 =

a11 + b11 a12 + b12

a21 + b21 a22 + b22



Explanation: Matrix addition combines two matrices element-wise. It

is used in ML for updating weights and biases or aggregating data.

Example: If A =

1 2

3 4

 and B =

5 6

7 8

, then A+B =

 6 8

10 12

.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

result = A + B

8

Matrix Scalar Multiplication

αA = α

a11 a12

a21 a22

 =

αa11 αa12

αa21 αa22



Explanation: Scaling a matrix by a scalar is useful in ML for adjusting

learning rates or normalization.

Example: If α = 2 and A =

1 2

3 4

, then αA =

2 4

6 8

.

Implementation:

import numpy as np

alpha = 2

A = np.array([[1, 2], [3, 4]])

result = alpha * A

9

Matrix-Vector Multiplication

Ax =

a11 a12

a21 a22

x1

x2

 =

a11x1 + a12x2

a21x1 + a22x2



Explanation: Matrix-vector multiplication transforms a vector using

a linear transformation defined by the matrix. It is fundamental in ML for

applying weights to inputs.

Example: If A =

1 2

3 4

 and x =

5
6

, then Ax =

17
39

.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

x = np.array([5, 6])

result = np.dot(A, x)

10

Matrix Multiplication

C = AB, cij =
n∑

k=1

aikbkj

Explanation: Matrix multiplication combines two matrices, producing

a matrix that represents the composition of linear transformations. It is

used in ML for layer operations in neural networks.

Example: If A =

1 2

3 4

 and B =

5 6

7 8

, then AB =

19 22

43 50

.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

result = np.dot(A, B)

11

Transpose of a Matrix

AT =

a11 a12

a21 a22

T

=

a11 a21

a12 a22



Explanation: The transpose of a matrix flips it over its diagonal,

exchanging rows with columns. It is used in ML for switching between

data representations.

Example: If A =

1 2

3 4

, then AT =

1 3

2 4

.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

result = A.T

12

Determinant of a 2×2 Matrix

det(A) =

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21

Explanation: The determinant measures the scaling factor of the

transformation represented by a matrix. It is used to determine matrix

invertibility.

Example: If A =

3 8

4 6

, then det(A) = 3 · 6− 8 · 4 = −14.

Implementation:

import numpy as np

A = np.array([[3, 8], [4, 6]])

result = np.linalg.det(A)

13

Inverse of a 2×2 Matrix

A−1 =
1

det(A)

 a22 −a12
−a21 a11

 , det(A) ̸= 0

Explanation: The inverse of a 2×2 matrix reverses the linear trans-

formation it represents. It is used in solving systems of linear equations.

Example: IfA =

3 8

4 6

, then det(A) = −14 andA−1 = 1
−14

 6 −8

−4 3

.

Implementation:

import numpy as np

A = np.array([[3, 8], [4, 6]])

result = np.linalg.inv(A)

14

Cramer’s Rule

xi =
det(Ai)

det(A)
, det(A) ̸= 0

Explanation: Cramer’s Rule solves a system of linear equations Ax =

b by replacing each column of A with b and computing determinants. It

is a theoretical method often used for small systems.

Example: For A =

2 1

1 3

 and b =

5
7

,

A1 =

5 1

7 3

 , A2 =

2 5

1 7


and det(A) = 5, so x1 =

det(A1)
det(A)

, x2 =
det(A2)
det(A)

.

Implementation:

import numpy as np

A = np.array([[2, 1], [1, 3]])

b = np.array([5, 7])

det_A = np.linalg.det(A)

x = [np.linalg.det(np.column_stack((b if i == j else A[:, j]

for j in range(A.shape[1])))) / det_A

for i in range(A.shape[1])]

15

Inverse of a Square Matrix

A−1 =
1

det(A)
adj(A), det(A) ̸= 0

Explanation: The inverse of a square matrix generalizes the process

for higher dimensions using the adjugate and determinant. It is crucial in

linear algebra and ML for solving systems of equations.

Example: If A =

4 7

2 6

, the inverse is computed using cofactor

expansion and scaling.

Implementation:

import numpy as np

A = np.array([[4, 7], [2, 6]])

result = np.linalg.inv(A)

16

Determinant of a Triangular Matrix

det(A) =
n∏

i=1

aii

Explanation: The determinant of a triangular matrix (upper or lower)

is the product of its diagonal elements. This simplifies determinant calcu-

lations and is useful in decompositions.

Example: If A =


2 1 0

0 3 4

0 0 5

, then det(A) = 2 · 3 · 5 = 30.

Implementation:

import numpy as np

A = np.array([[2, 1, 0], [0, 3, 4], [0, 0, 5]])

result = np.prod(np.diag(A))

17

Rank-Nullity Theorem

rank(A) + nullity(A) = n

Explanation: The Rank-Nullity Theorem states that the sum of the

rank (dimension of column space) and nullity (dimension of null space) of

a matrix equals the number of columns. It is fundamental in linear algebra

for understanding solutions to systems of linear equations.

Example: If A has 3 columns and its rank is 2, then the nullity is 1

since 2 + 1 = 3.

Implementation:

import numpy as np

from numpy.linalg import matrix_rank

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

rank = matrix_rank(A)

nullity = A.shape[1] - rank

18

Hadamard (Elementwise) Product

C = A ◦B =

a11b11 a12b12

a21b21 a22b22



Explanation: The Hadamard product performs elementwise multipli-

cation between two matrices. It is used in ML for feature-wise scaling or

gating.

Example: If A =

1 2

3 4

 and B =

5 6

7 8

, then C =

 5 12

21 32

.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

result = np.multiply(A, B)

19

Outer Product

C = u⊗ v =


u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...

umv1 umv2 · · · umvn



Explanation: The outer product generates a matrix by multiplying

every element of one vector by every element of another. It is used in

tensor operations and constructing rank-1 matrices.

Example: If u =

1
2

 and v =


3

4

5

, then u⊗ v =

3 4 5

6 8 10

.

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4, 5])

result = np.outer(u, v)

20

Frobenius Norm

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2

Explanation: The Frobenius norm measures the magnitude of a ma-

trix by summing the squares of all its elements. It is widely used in opti-

mization and matrix analysis.

Example: If A =

1 2

3 4

, then ∥A∥F =
√
12 + 22 + 32 + 42 =

√
30.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

result = np.linalg.norm(A, ’fro’)

21

Matrix Norm Inequality

∥Ax∥ ≤ ∥A∥∥x∥

Explanation: The matrix norm inequality states that the norm of a

matrix-vector product is bounded by the product of the matrix norm and

the vector norm. It is a key property in numerical linear algebra and ML

for error analysis.

Example: For A =

1 2

3 4

 and x =

1
1

, compute ∥Ax∥ ≤ ∥A∥∥x∥.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

x = np.array([1, 1])

left = np.linalg.norm(np.dot(A, x))

right = np.linalg.norm(A) * np.linalg.norm(x)

inequality_holds = left <= right

22

Matrix Trace

Tr(A) =
n∑

i=1

aii

Explanation: The trace of a matrix is the sum of its diagonal elements.

It is used in ML for loss functions and characterizing matrix properties.

Example: If A =

1 2

3 4

, then Tr(A) = 1 + 4 = 5.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

result = np.trace(A)

23

Trace of a Product

Tr(AB) = Tr(BA)

Explanation: The trace of a product of two matrices is invariant under

cyclic permutations. This property is useful in ML for simplifying gradients

in matrix calculus.

Example: For A =

1 2

3 4

 and B =

5 6

7 8

, compute Tr(AB) =

Tr(BA).

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

trace1 = np.trace(np.dot(A, B))

trace2 = np.trace(np.dot(B, A))

equality_holds = trace1 == trace2

24

Block Matrix Multiplication

C =

A B

C D

E F

G H

 =

AE+BG AF+BH

CE+DG CF+DH



Explanation: Block matrix multiplication follows the same rules as

scalar matrix multiplication, but each element is a submatrix. It is used in

ML for large-scale computations and decompositions.

Example: Compute the block product for two partitioned 4 × 4 ma-

trices.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

C = np.array([[9, 10], [11, 12]])

D = np.array([[13, 14], [15, 16]])

E = np.array([[17, 18], [19, 20]])

F = np.array([[21, 22], [23, 24]])

G = np.array([[25, 26], [27, 28]])

H = np.array([[29, 30], [31, 32]])

top_left = np.dot(A, E) + np.dot(B, G)

top_right = np.dot(A, F) + np.dot(B, H)

bottom_left = np.dot(C, E) + np.dot(D, G)

bottom_right = np.dot(C, F) + np.dot(D, H)

25

result = np.block([[top_left, top_right], [bottom_left, bottom_right]])

26

Kronecker Product

C = A⊗B =

a11B a12B

a21B a22B



Explanation: The Kronecker product produces a block matrix by mul-

tiplying each element of one matrix by the entirety of another. It is used

in ML for tensor operations and signal processing.

Example: If A =

1 2

3 4

 and B =

0 5

6 7

, compute A⊗B.

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 4]])

B = np.array([[0, 5], [6, 7]])

result = np.kron(A, B)

27

SECTION 2 : PROBABILITY AND

STATISTICS

Conditional Probability

P (A | B) =
P (A ∩B)

P (B)
, P (B) > 0

Explanation: Conditional probability quantifies the likelihood of event

A occurring given that event B has occurred. It is fundamental in proba-

bilistic reasoning and Bayesian inference.

Example: If P (A ∩ B) = 0.2 and P (B) = 0.5, then P (A | B) = 0.2
0.5

=

0.4.

Implementation:

P_A_and_B = 0.2

P_B = 0.5

P_A_given_B = P_A_and_B / P_B

28

Law of Total Probability

P (A) =
∑
i

P (A | Bi)P (Bi)

Explanation: The law of total probability relates the probability of

an event A to the probabilities of A given a partition of events {Bi}. It is

used in scenarios with conditional dependencies.

Example: If P (A | B1) = 0.3, P (A | B2) = 0.7, P (B1) = 0.4, and

P (B2) = 0.6, then P (A) = 0.3 · 0.4 + 0.7 · 0.6 = 0.54.

Implementation:

P_A_given_B1 = 0.3

P_A_given_B2 = 0.7

P_B1 = 0.4

P_B2 = 0.6

P_A = P_A_given_B1 * P_B1 + P_A_given_B2 * P_B2

29

Bayes’ Theorem

P (A | B) =
P (B | A)P (A)

P (B)
, P (B) > 0

Explanation: Bayes’ Theorem allows the reversal of conditional prob-

abilities, often used in updating beliefs with new evidence in ML and statis-

tics.

Example: If P (B | A) = 0.8, P (A) = 0.3, and P (B) = 0.5, then

P (A | B) = 0.8·0.3
0.5

= 0.48.

Implementation:

P_B_given_A = 0.8

P_A = 0.3

P_B = 0.5

P_A_given_B = (P_B_given_A * P_A) / P_B

30

Expectation

E[X] =
∑
i

xiP (X = xi)

Explanation: The expectation (mean) of a random variable is the

weighted average of all possible values, weighted by their probabilities. It

is central in probability and statistics.

Example: If X = {1, 2, 3} with P (X = 1) = 0.2, P (X = 2) = 0.5, and

P (X = 3) = 0.3, then E[X] = 1 · 0.2 + 2 · 0.5 + 3 · 0.3 = 2.1.

Implementation:

X = [1, 2, 3]

P_X = [0.2, 0.5, 0.3]

expectation = sum(x * p for x, p in zip(X, P_X))

31

Variance

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

Explanation: Variance measures the spread of a random variable

around its mean. It is widely used in ML for assessing uncertainty and

model performance.

Example: For X = {1, 2, 3} with P (X = 1) = 0.2, P (X = 2) = 0.5,

and P (X = 3) = 0.3, compute E[X] = 2.1 and E[X2] = 4.7, so Var(X) =

4.7− (2.1)2 = 0.29.

Implementation:

X = [1, 2, 3]

P_X = [0.2, 0.5, 0.3]

expectation = sum(x * p for x, p in zip(X, P_X))

expectation_X2 = sum(x**2 * p for x, p in zip(X, P_X))

variance = expectation_X2 - expectation**2

32

Standard Deviation

σ(X) =
√
Var(X)

Explanation: The standard deviation is the square root of the variance

and provides a measure of dispersion in the same units as the random vari-

able. It is widely used in data analysis and ML for variability assessment.

Example: If Var(X) = 0.29, then σ(X) =
√
0.29 ≈ 0.54.

Implementation:

variance = 0.29

std_dev = variance**0.5

33

Covariance

Cov(X, Y) = E[(X − E[X])(Y − E[Y])]

Explanation: Covariance measures the joint variability of two random

variables. A positive value indicates that they increase together, while a

negative value indicates an inverse relationship.

Example: If X = {1, 2}, Y = {3, 4}, P (X, Y) = {0.5, 0.5}, and

E[X] = 1.5, E[Y] = 3.5, compute Cov(X, Y) = 0.25.

Implementation:

X = [1, 2]

Y = [3, 4]

P_XY = [0.5, 0.5]

E_X = sum(x * p for x, p in zip(X, P_XY))

E_Y = sum(y * p for y, p in zip(Y, P_XY))

covariance = sum((x - E_X) * (y - E_Y) * p for x, y, p in zip(X, Y, P_XY))

34

Correlation

ρ(X, Y) =
Cov(X, Y)

σ(X)σ(Y)

Explanation: Correlation normalizes covariance to a scale of [−1, 1],

quantifying the strength and direction of a linear relationship between two

variables.

Example: If Cov(X, Y) = 0.25, σ(X) = 0.5, and σ(Y) = 1.0, then

ρ(X, Y) = 0.25
0.5·1.0 = 0.5.

Implementation:

covariance = 0.25

std_X = 0.5

std_Y = 1.0

correlation = covariance / (std_X * std_Y)

35

Probability Mass Function (PMF)

P (X = x) =

pi, if x = xi

0, otherwise

Explanation: The PMF defines the probabilities of discrete outcomes

of a random variable. It is a foundational concept in probability theory.

Example: If X = {1, 2, 3} with P (X = 1) = 0.2, P (X = 2) = 0.5, and

P (X = 3) = 0.3, the PMF is defined for these values.

Implementation:

X = [1, 2, 3]

P_X = [0.2, 0.5, 0.3]

def pmf(x):

return P_X[X.index(x)] if x in X else 0

36

Probability Density Function (PDF)

fX(x) ≥ 0,

∫ ∞

−∞
fX(x)dx = 1

Explanation: The PDF defines the relative likelihood of a continuous

random variable at a specific value. It is used in probability and statistics

for modeling continuous distributions.

Example: For a standard normal distribution, the PDF is fX(x) =

1√
2π
e−

x2

2 .

Implementation:

import numpy as np

from scipy.stats import norm

x = 0 # example point

pdf_value = norm.pdf(x)

37

Joint Probability

P (A ∩B) = P (A | B)P (B)

Explanation: Joint probability quantifies the likelihood of two events

occurring together. It is essential in probabilistic modeling and understand-

ing relationships between variables.

Example: If P (A | B) = 0.4 and P (B) = 0.5, then P (A ∩ B) =

0.4 · 0.5 = 0.2.

Implementation:

P_A_given_B = 0.4

P_B = 0.5

P_A_and_B = P_A_given_B * P_B

38

CDF (Cumulative Distribution Function)

FX(x) = P (X ≤ x)

Explanation: The CDF of a random variable gives the probability that

the variable takes a value less than or equal to x. It is used to describe the

distribution function for both discrete and continuous variables.

Example: For a uniform distribution X ∼ U(0, 1), FX(0.5) = 0.5.

Implementation:

from scipy.stats import uniform

x = 0.5

cdf_value = uniform.cdf(x, loc=0, scale=1)

39

Entropy (discrete)

H(X) = −
∑
i

P (X = xi) log2 P (X = xi)

Explanation: Entropy measures the uncertainty of a discrete random

variable. It is a fundamental concept in information theory and ML, par-

ticularly in decision trees and loss functions.

Example: If P (X) = {0.5, 0.5}, thenH(X) = −0.5 log2(0.5)−0.5 log2(0.5) =

1.

Implementation:

import numpy as np

P_X = [0.5, 0.5]

entropy = -sum(p * np.log2(p) for p in P_X if p > 0)

40

Conditional Expectation

E[X | Y] =
∑
x

xP (X = x | Y)

Explanation: Conditional expectation is the expected value of a ran-

dom variable X given that another variable Y is known. It is critical in

Bayesian inference and probabilistic modeling.

Example: If X = {1, 2} with P (X = 1 | Y) = 0.7 and P (X = 2 |

Y) = 0.3, then E[X | Y] = 1 · 0.7 + 2 · 0.3 = 1.3.

Implementation:

X = [1, 2]

P_X_given_Y = [0.7, 0.3]

conditional_expectation = sum(x * p for x, p in zip(X, P_X_given_Y))

41

Law of Iterated Expectations

E[X] = E[E[X | Y]]

Explanation: The law of iterated expectations states that the expec-

tation of X is the weighted average of its conditional expectations over Y .

It is foundational in probability theory and statistics.

Example: Suppose X depends on Y = {1, 2}, with E[X | Y = 1] = 3,

E[X | Y = 2] = 5, and P (Y = 1) = 0.6, P (Y = 2) = 0.4. Then E[X] =

3 · 0.6 + 5 · 0.4 = 3.8.

Implementation:

E_X_given_Y = [3, 5]

P_Y = [0.6, 0.4]

E_X = sum(e * p for e, p in zip(E_X_given_Y, P_Y))

42

Marginal Probability

P (A) =
∑
B

P (A ∩B)

Explanation: Marginal probability calculates the probability of an

event A by summing (or integrating, for continuous cases) over all possible

outcomes of another variable B. It is used in probabilistic modeling to

reduce joint distributions.

Example: If P (A ∩ B1) = 0.3 and P (A ∩ B2) = 0.4, then P (A) =

0.3 + 0.4 = 0.7.

Implementation:

P_A_and_B = [0.3, 0.4]

P_A = sum(P_A_and_B)

43

Skewness

Skewness(X) =
E[(X − µ)3]

σ3

Explanation: Skewness measures the asymmetry of the probability

distribution of a random variable about its mean. Positive skew indicates

a longer right tail, and negative skew indicates a longer left tail.

Example: For X = {1, 2, 3} with mean µ = 2 and standard deviation

σ = 0.816, compute Skewness(X) using the third central moment.

Implementation:

import numpy as np

X = [1, 2, 3]

mu = np.mean(X)

sigma = np.std(X)

skewness = np.mean(((X - mu) / sigma)**3)

44

Kurtosis

Kurtosis(X) =
E[(X − µ)4]

σ4

Explanation: Kurtosis measures the ”tailedness” of the probability

distribution. A high kurtosis indicates heavy tails, while a low kurtosis

indicates light tails.

Example: For X = {1, 2, 3} with mean µ = 2 and standard deviation

σ = 0.816, compute Kurtosis(X) using the fourth central moment.

Implementation:

import numpy as np

X = [1, 2, 3]

mu = np.mean(X)

sigma = np.std(X)

kurtosis = np.mean(((X - mu) / sigma)**4)

45

Binary Cross-Entropy (special case)

BCE(y, ŷ) = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

Explanation: Binary cross-entropy is a loss function used for binary

classification tasks. It measures the dissimilarity between predicted prob-

abilities (ŷ) and true labels (y).

Example: For y = [1, 0] and ŷ = [0.8, 0.2], compute BCE = −1
2
(log(0.8) + log(0.8)).

Implementation:

import numpy as np

y = np.array([1, 0])

y_hat = np.array([0.8, 0.2])

bce = -np.mean(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))

46

Variance (Alternative)

Var(X) = E[X2]− (E[X])2

Explanation: An alternative formula for variance uses the difference

between the expected value of the square of X and the square of the ex-

pected value of X. This method is computationally efficient.

Example: For X = {1, 2, 3}, compute E[X2] = 12+22+32

3
= 4.67 and

(E[X])2 = 22 = 4, so Var(X) = 0.67.

Implementation:

import numpy as np

X = np.array([1, 2, 3])

E_X2 = np.mean(X**2)

E_X = np.mean(X)

variance = E_X2 - E_X**2

47

SECTION 3 : CALCULUS

Limit Definition of Derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Explanation: The derivative of a function is defined as the limit of the

difference quotient as h approaches zero. It represents the instantaneous

rate of change of the function.

Example: For f(x) = x2, compute f ′(x) = limh→0
(x+h)2−x2

h
= 2x.

Implementation:

def derivative(f, x, h=1e-5):

return (f(x + h) - f(x)) / h

48

Power Rule

d

dx
xn = nxn−1

Explanation: The power rule simplifies differentiation of monomials.

It is foundational for calculus and widely used in gradient computations in

ML.

Example: For f(x) = x3, f ′(x) = 3x2.

Implementation:

def power_rule(n, x):

return n * x**(n - 1)

49

Product Rule

d

dx
[u(x)v(x)] = u′(x)v(x) + u(x)v′(x)

Explanation: The product rule computes the derivative of the product

of two functions. It is crucial for handling multiplicative relationships in

ML.

Example: For f(x) = (x2)(ex), f ′(x) = 2xex + x2ex.

Implementation:

def product_rule(u, v, u_prime, v_prime, x):

return u_prime(x) * v(x) + u(x) * v_prime(x)

50

Quotient Rule

d

dx

[
u(x)

v(x)

]
=

u′(x)v(x)− u(x)v′(x)

[v(x)]2

Explanation: The quotient rule computes the derivative of the ratio

of two functions. It is essential for operations involving divisions in ML

models.

Example: For f(x) = x2

ex
, f ′(x) = 2xex−x2ex

e2x
.

Implementation:

def quotient_rule(u, v, u_prime, v_prime, x):

return (u_prime(x) * v(x) - u(x) * v_prime(x)) / (v(x)**2)

51

Chain Rule

d

dx
f(g(x)) = f ′(g(x))g′(x)

Explanation: The chain rule computes the derivative of a compos-

ite function. It is extensively used in backpropagation for training neural

networks.

Example: For f(x) = sin(x2), f ′(x) = cos(x2) · 2x.

Implementation:

def chain_rule(f_prime, g, g_prime, x):

return f_prime(g(x)) * g_prime(x)

52

Logarithmic Derivative

d

dx
ln(x) =

1

x
, x > 0

Explanation: The derivative of the natural logarithm function is the

reciprocal of its argument. It is frequently used in ML for optimization and

logarithmic transformations.

Example: For f(x) = ln(x), f ′(2) = 1
2
.

Implementation:

import numpy as np

def log_derivative(x):

return 1 / x

53

Exponential Derivative

d

dx
ex = ex

Explanation: The exponential function is unique as its derivative is

equal to itself. This property is key in gradient computations and expo-

nential growth models in ML.

Example: For f(x) = ex, f ′(2) = e2.

Implementation:

import numpy as np

def exp_derivative(x):

return np.exp(x)

54

Integral of a Power Function

∫
xndx =

xn+1

n+ 1
+ C, n ̸= −1

Explanation: The integral of a power function generalizes the an-

tiderivative for monomials. This rule is fundamental in integral calculus

and applied in ML for cost function analysis.

Example: For f(x) = x2,
∫
x2dx = x3

3
+ C.

Implementation:

def power_integral(n, x):

return x**(n + 1) / (n + 1)

55

Fundamental Theorem of Calculus

∫ b

a

f(x)dx = F (b)− F (a), where F ′(x) = f(x)

Explanation: The Fundamental Theorem of Calculus links differenti-

ation and integration, stating that integration over an interval is the dif-

ference of the antiderivative evaluated at the endpoints.

Example: For f(x) = x2 over [1, 3],
∫ 3

1
x2dx =

[
x3

3

]3
1
= 27

3
− 1

3
= 26

3
.

Implementation:

def definite_integral(f, a, b):

from scipy.integrate import quad

result, _ = quad(f, a, b)

return result

56

Partial Derivatives

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h

Explanation: Partial derivatives measure the rate of change of a multi-

variable function with respect to one variable while keeping others constant.

They are essential in optimization and gradient-based ML methods.

Example: For f(x, y) = x2 + y2, ∂f
∂x

= 2x, ∂f
∂y

= 2y.

Implementation:

def partial_derivative(f, var, point, h=1e-5):

args = list(point)

args[var] += h

return (f(*args) - f(*point)) / h

57

Gradient

∇f(x) =


∂f
∂x1

∂f
∂x2

...

∂f
∂xn



Explanation: The gradient is a vector containing all partial derivatives

of a scalar-valued function. It points in the direction of the steepest ascent

and is widely used in ML optimization algorithms like gradient descent.

Example: For f(x, y) = x2 + y2, ∇f(x, y) =

2x
2y

.

Implementation:

import numpy as np

def gradient(f, point, h=1e-5):

grad = np.zeros(len(point))

for i in range(len(point)):

args = point.copy()

args[i] += h

grad[i] = (f(*args) - f(*point)) / h

return grad

58

Second Derivative (Hessian)

H(f) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · ·
∂2f

∂x2∂x1

∂2f
∂x2

2
· · ·

...
...

. . .



Explanation: The Hessian is a square matrix of second-order partial

derivatives. It is used in optimization to assess curvature and convergence

properties of a function.

Example: For f(x, y) = x2 + y2, the Hessian is H(f) =

2 0

0 2

.

Implementation:

def hessian(f, point, h=1e-5):

n = len(point)

hess = np.zeros((n, n))

for i in range(n):

for j in range(n):

args = point.copy()

args[i] += h

args[j] += h

f_ij = f(*args)

args[j] -= h

f_i = f(*args)

args[i] -= h

args[j] += h

59

f_j = f(*args)

f_orig = f(*point)

hess[i, j] = (f_ij - f_i - f_j + f_orig) / (h ** 2)

return hess

60

Directional Derivative

Dvf(x) = ∇f(x) · v

Explanation: The directional derivative measures the rate of change

of a function in the direction of a given vector. It is critical in optimization

and ML for evaluating function behavior in a specific direction.

Example: For f(x, y) = x2 + y2, ∇f(x, y) =

2x
2y

. In the direction

v =

1
0

, Dvf(x, y) = 2x.

Implementation:

def directional_derivative(f, grad_f, point, direction):

grad = grad_f(point)

return np.dot(grad, direction)

61

Higher-Order Partial Derivatives

∂kf

∂xp1
1 ∂xp2

2 · · · ∂x
pn
n

Explanation: Higher-order partial derivatives extend partial deriva-

tives to greater orders. Mixed derivatives often satisfy equality (fxy = fyx)

under smoothness conditions.

Example: For f(x, y) = x2y, ∂2f
∂x∂y

= 2x.

Implementation:

def higher_order_partial(f, point, var_indices, h=1e-5):

args = list(point)

for var in var_indices:

args[var] += h

f_plus = f(*args)

for var in var_indices:

args[var] -= h * len(var_indices)

f_minus = f(*args)

return (f_plus - f_minus) / (h ** len(var_indices))

62

Total Derivative

df

dt
=

n∑
i=1

∂f

∂xi

dxi

dt

Explanation: The total derivative accounts for changes in all indepen-

dent variables as functions of an external variable t. It is used in dynamical

systems and optimization.

Example: If f(x, y) = x2 + y2, x = t, and y = t2, then df
dt

= 2x · 1 +

2y · 2t = 2t+ 4t3.

Implementation:

def total_derivative(f, partials, dx_dt, point):

return sum(partials[i] * dx_dt[i] for i in range(len(point)))

63

Implicit Differentiation

dy

dx
= −

∂F
∂x
∂F
∂y

Explanation: Implicit differentiation computes the derivative of a de-

pendent variable in an equation where the variable cannot be explicitly

solved. It is used in ML and calculus for handling complex equations.

Example: For F (x, y) = x2 + y2 − 1 = 0, dy
dx

= −x
y
.

Implementation:

def implicit_differentiation(F, x, y, partial_F_x, partial_F_y):

return -partial_F_x(x, y) / partial_F_y(x, y)

64

Taylor Series Expansion

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

Explanation: The Taylor series approximates a function near a point

a using its derivatives. It is used in optimization and numerical analysis.

Example: For f(x) = ex near a = 0, f(x) ≈ 1 + x+ x2

2
+ · · ·.

Implementation:

def taylor_series(f, derivatives, a, x, terms=3):

result = 0

for n in range(terms):

result += derivatives[n](a) * (x - a)**n / np.math.factorial(n)

return result

65

Jacobian Matrix

J(f) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fm
∂x1

· · · ∂fm
∂xn



Explanation: The Jacobian matrix contains all first-order partial deriva-

tives of a vector-valued function. It is essential in ML for gradient-based

optimization in multivariable spaces.

Example: For f(x, y) =

x2 + y

y2 + x

, the Jacobian is

2x 1

1 2y

.

Implementation:

def jacobian(f, point, h=1e-5):

m = len(f)

n = len(point)

J = np.zeros((m, n))

for i in range(m):

for j in range(n):

args = point.copy()

args[j] += h

J[i, j] = (f[i](*args) - f[i](*point)) / h

return J

66

Arc Length of a Curve

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

Explanation: The arc length measures the distance along a curve

between two points. It is used in geometry and physics for path analysis.

Example: For y = x2 over [0, 1], L =
∫ 1

0

√
1 + (2x)2dx.

Implementation:

from scipy.integrate import quad

def arc_length(f_prime, a, b):

integrand = lambda x: np.sqrt(1 + f_prime(x)**2)

return quad(integrand, a, b)[0]

67

Curvature of a Function

κ(x) =
|y′′(x)|

(1 + [y′(x)]2)3/2

Explanation: Curvature quantifies how sharply a curve bends at a

given point. It is used in geometry and trajectory analysis in robotics and

ML.

Example: For y = x2, y′(x) = 2x, y′′(x) = 2, so κ(x) = 2
(1+4x2)3/2

.

Implementation:

def curvature(f_prime, f_double_prime, x):

numerator = abs(f_double_prime(x))

denominator = (1 + f_prime(x)**2)**1.5

return numerator / denominator

68

Integral by Parts

∫
uv′dx = uv −

∫
u′vdx

Explanation: Integration by parts is a technique derived from the

product rule of differentiation. It is used to simplify integrals involving

products of functions.

Example: For
∫
xexdx, let u = x and v′ = ex. Then

∫
xexdx =

xex −
∫
exdx = xex − ex + C.

Implementation:

from sympy import symbols, integrate, exp

x = symbols(’x’)

u = x

v_prime = exp(x)

v = integrate(v_prime, x)

integral = u * v - integrate(v * u.diff(x), x)

69

Volume of Revolution (Disk Method)

V = π

∫ b

a

[f(x)]2dx

Explanation: The disk method computes the volume of a solid of

revolution by slicing it into disks perpendicular to the axis of rotation. It

is common in geometry and physics.

Example: For y = x2 revolved around the x-axis over [0, 1], V =

π
∫ 1

0
(x2)2dx = π

∫ 1

0
x4dx = π

5
.

Implementation:

from scipy.integrate import quad

import numpy as np

def volume_of_revolution(f, a, b):

integrand = lambda x: np.pi * f(x)**2

return quad(integrand, a, b)[0]

70

Surface Integral

∫∫
S

f(x, y, z)dS =

∫∫
R

f(x, y, g(x, y))

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dA

Explanation: A surface integral extends the idea of a line integral to

a surface, summing a scalar field or vector flux over the surface.

Example: Compute the surface integral of f(x, y, z) = z over z =

x2 + y2 for x2 + y2 ≤ 1.

Implementation:

from scipy.integrate import dblquad

def surface_integral(f, g, bounds_x, bounds_y):

def integrand(x, y):

gx, gy = g(x, y)

return f(x, y, g(x, y)) * np.sqrt(1 + gx**2 + gy**2)

return dblquad(integrand, *bounds_x, *bounds_y)

71

Divergence of a Vector Field

divF = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

Explanation: The divergence measures the magnitude of a vector

field’s source or sink at a given point. It is used in fluid dynamics and

electromagnetism.

Example: For F =


x

y

z

, divF = 1 + 1 + 1 = 3.

Implementation:

from sympy import symbols, diff

x, y, z = symbols(’x y z’)

F = [x, y, z]

divergence = sum(diff(F[i], var) for i, var in enumerate([x, y, z]))

72

Curl of a Vector Field

curlF = ∇× F =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣

Explanation: The curl measures the rotation or circulation of a vector

field at a point. It is critical in fluid mechanics and electromagnetism.

Example: For F =


0

0

xy

, curlF =


−y

x

0

.

Implementation:

from sympy import symbols, Matrix

x, y, z = symbols(’x y z’)

F = Matrix([0, 0, x*y])

curl = F.jacobian([x, y, z]).transpose() - F.jacobian([x, y, z])

73

SECTION 4 : OPTIMIZATION

Gradient Descent

θ(t+1) = θ(t) − η∇J(θ(t))

Explanation: Gradient descent is an optimization algorithm that it-

eratively updates parameters in the direction of the negative gradient to

minimize the cost function J(θ).

Example: For J(θ) = θ2 and η = 0.1, the update is θ(t+1) = θ(t) −

0.2θ(t).

Implementation:

def gradient_descent(gradient, theta, eta, steps):

for _ in range(steps):

theta -= eta * gradient(theta)

return theta

74

Stochastic Gradient Descent (SGD)

θ(t+1) = θ(t) − η∇Ji(θ(t))

Explanation: SGD computes gradients on individual data points, up-

dating parameters more frequently. It is widely used in ML due to its

efficiency with large datasets.

Example: For Ji(θ) = (θ− yi)
2, the update is based on one data point

at each iteration.

Implementation:

def stochastic_gradient_descent(gradient, theta, eta, data, steps):

for _ in range(steps):

i = np.random.randint(len(data))

theta -= eta * gradient(theta, data[i])

return theta

75

Momentum-based Gradient Descent

v(t+1) = βv(t) − η∇J(θ(t)), θ(t+1) = θ(t) + v(t+1)

Explanation: Momentum adds an exponentially weighted moving av-

erage of past gradients to the current update, improving convergence speed

and stability.

Example: For β = 0.9, η = 0.1, the velocity update smooths oscilla-

tions in gradient descent.

Implementation:

def momentum_gradient_descent(gradient, theta, eta, beta, steps):

v = 0

for _ in range(steps):

v = beta * v - eta * gradient(theta)

theta += v

return theta

76

Nesterov Accelerated Gradient (NAG)

v(t+1) = βv(t) − η∇J(θ(t) + βv(t)), θ(t+1) = θ(t) + v(t+1)

Explanation: NAG improves upon momentum by calculating gradi-

ents at a lookahead position, resulting in more precise updates.

Example: For β = 0.9, NAG anticipates the future direction, reducing

overshooting in oscillatory scenarios.

Implementation:

def nesterov_gradient_descent(gradient, theta, eta, beta, steps):

v = 0

for _ in range(steps):

lookahead = theta + beta * v

v = beta * v - eta * gradient(lookahead)

theta += v

return theta

77

RMSProp

s(t+1) = βs(t) + (1− β)[∇J(θ(t))]2, θ(t+1) = θ(t) − η√
s(t+1) + ϵ

∇J(θ(t))

Explanation: RMSProp scales the learning rate by a moving average

of squared gradients, improving convergence for non-convex problems.

Example: For β = 0.9, RMSProp adapts the step size for each param-

eter, stabilizing updates.

Implementation:

def rmsprop(gradient, theta, eta, beta, epsilon, steps):

s = 0

for _ in range(steps):

grad = gradient(theta)

s = beta * s + (1 - beta) * grad**2

theta -= eta / (np.sqrt(s) + epsilon) * grad

return theta

78

Adam Optimization

m(t+1) = β1m
(t) + (1− β1)∇J(θ(t)), s(t+1) = β2s

(t) + (1− β2)[∇J(θ(t))]2

m̂ =
m(t+1)

1− βt
1

, ŝ =
s(t+1)

1− βt
2

, θ(t+1) = θ(t) − η√
ŝ+ ϵ

m̂

Explanation: Adam combines momentum and RMSProp, adapting

step sizes and smoothing updates. It is one of the most popular optimiza-

tion algorithms in ML.

Example: For β1 = 0.9, β2 = 0.999, Adam balances momentum and

per-parameter scaling.

Implementation:

def adam(gradient, theta, eta, beta1, beta2, epsilon, steps):

m, s = 0, 0

for t in range(1, steps + 1):

grad = gradient(theta)

m = beta1 * m + (1 - beta1) * grad

s = beta2 * s + (1 - beta2) * grad**2

m_hat = m / (1 - beta1**t)

s_hat = s / (1 - beta2**t)

theta -= eta / (np.sqrt(s_hat) + epsilon) * m_hat

return theta

79

Regularized Optimization Objective

Jreg(θ) = J(θ) + λR(θ)

Explanation: Regularization penalizes model complexity to prevent

overfitting. Common regularizers include L1 (lasso) and L2 (ridge) norms.

Example: For R(θ) = ∥θ∥22, Jreg(θ) = J(θ) + λ∥θ∥22.

Implementation:

def regularized_objective(loss, theta, reg, lam):

return loss(theta) + lam * reg(theta)

80

Learning Rate Decay

ηt =
η0

1 + γt

Explanation: Learning rate decay gradually reduces the learning rate

to improve convergence stability as training progresses.

Example: For η0 = 0.1, γ = 0.01, at step t = 10, ηt = 0.1/(1 + 0.01 ·

10) = 0.0909.

Implementation:

def learning_rate_decay(eta0, gamma, t):

return eta0 / (1 + gamma * t)

81

Gradient Clipping

g = clip(g,−τ, τ)

Explanation: Gradient clipping limits the gradient magnitude to pre-

vent exploding gradients in deep neural networks.

Example: For τ = 1.0, clip gradients to the range [−1, 1].

Implementation:

def gradient_clipping(grad, tau):

return np.clip(grad, -tau, tau)

82

Minibatch Gradient Descent

θ(t+1) = θ(t) − η∇JBt(θ
(t))

Explanation: Minibatch gradient descent computes updates using

small random subsets of data, balancing SGD’s noise and batch gradient

descent’s stability.

Example: Use minibatch size B = 32 to compute updates on smaller

subsets of data.

Implementation:

def minibatch_gradient_descent(gradient, theta, eta, data, batch_size, steps):

for _ in range(steps):

batch = np.random.choice(data, batch_size, replace=False)

theta -= eta * gradient(theta, batch)

return theta

83

Coordinate Descent

θ
(t+1)
j = θ

(t)
j − η

∂J(θ)

∂θj

Explanation: Coordinate descent optimizes a single parameter at a

time, cycling through all parameters until convergence. It is effective for

high-dimensional problems.

Example: Minimize J(θ1, θ2) = (θ1 − 1)2 + (θ2 − 2)2 by alternately

updating θ1 and θ2.

Implementation:

def coordinate_descent(gradient, theta, eta, steps):

for _ in range(steps):

for j in range(len(theta)):

theta[j] -= eta * gradient(theta, j)

return theta

84

Elastic Net Regularization

Jreg(θ) = J(θ) + λ1∥θ∥1 + λ2∥θ∥22

Explanation: Elastic Net combines L1 and L2 regularization to handle

sparsity and multicollinearity. It is commonly used in regression tasks.

Example: For λ1 = 0.1, λ2 = 0.2, and J(θ) = ∥θ − y∥22, compute the

regularized objective.

Implementation:

def elastic_net_objective(loss, theta, lam1, lam2):

return loss(theta) + lam1 * np.sum(np.abs(theta)) + lam2 * np.sum(theta**2)

85

Adagrad Optimization

θ(t+1) = θ(t) − η√
G(t) + ϵ

∇J(θ(t))

G(t) =
t∑

i=1

[∇J(θ(i))]2

Explanation: Adagrad adapts the learning rate for each parameter

based on the history of gradients, improving performance on sparse data.

Example: For η = 0.1, adaptively scale updates for different features.

Implementation:

def adagrad(gradient, theta, eta, epsilon, steps):

G = 0

for _ in range(steps):

grad = gradient(theta)

G += grad**2

theta -= eta / (np.sqrt(G) + epsilon) * grad

return theta

86

AdamW Optimization

θ(t+1) = θ(t) − η√
ŝ+ ϵ

m̂− λθ(t)

Explanation: AdamW modifies Adam by decoupling weight decay

from the gradient updates, improving regularization and generalization in

ML models.

Example: For λ = 0.01, regularize weights alongside adaptive learning

rates.

Implementation:

def adamw(gradient, theta, eta, beta1, beta2, lam, epsilon, steps):

m, s = 0, 0

for t in range(1, steps + 1):

grad = gradient(theta)

m = beta1 * m + (1 - beta1) * grad

s = beta2 * s + (1 - beta2) * grad**2

m_hat = m / (1 - beta1**t)

s_hat = s / (1 - beta2**t)

theta -= eta / (np.sqrt(s_hat) + epsilon) * m_hat + lam * theta

return theta

87

Momentum “Heavy Ball” Method

θ(t+1) = θ(t) + β(θ(t) − θ(t−1))− η∇J(θ(t))

Explanation: This variant of momentum includes an inertial term to

improve convergence speed for strongly convex problems.

Example: For β = 0.9, the ”heavy ball” accelerates gradient descent.

Implementation:

def heavy_ball(gradient, theta, eta, beta, steps):

prev_theta = theta.copy()

v = 0

for _ in range(steps):

grad = gradient(theta)

v = beta * (theta - prev_theta) - eta * grad

prev_theta = theta.copy()

theta += v

return theta

88

Projection / Projected Gradient Descent

θ(t+1) = ProjC(θ
(t) − η∇J(θ(t)))

Explanation: Projected gradient descent ensures that updates remain

within a feasible set C, often used for constrained optimization.

Example: For C = ∥θ∥2 ≤ 1, project θ onto the unit ball after each

step.

Implementation:

def projected_gradient_descent(gradient, theta, eta, projection, steps):

for _ in range(steps):

theta -= eta * gradient(theta)

theta = projection(theta)

return theta

89

Newton’s Method

θ(t+1) = θ(t) − [H(θ(t))]−1∇J(θ(t))

Explanation: Newton’s method uses second-order information via the

Hessian to improve convergence, especially for quadratic cost functions.

Example: For J(θ) = θ2, the update uses H = 2.

Implementation:

def newtons_method(gradient, hessian, theta, steps):

for _ in range(steps):

grad = gradient(theta)

hess = hessian(theta)

theta -= np.linalg.inv(hess).dot(grad)

return theta

90

Proximal Gradient Method

θ(t+1) = proxλR(θ
(t) − η∇J(θ(t)))

Explanation: The proximal gradient method generalizes gradient de-

scent to handle nonsmooth regularization terms such as L1 norm.

Example: For R(θ) = ∥θ∥1, compute soft thresholding for each pa-

rameter.

Implementation:

def proximal_gradient(gradient, theta, eta, prox, steps):

for _ in range(steps):

theta -= eta * gradient(theta)

theta = prox(theta)

return theta

91

Proximal Gradient with L1 (ISTA)

θ(t+1) = soft(θ(t) − η∇J(θ(t)), λη)

Explanation: Iterative Shrinkage-Thresholding Algorithm (ISTA) ap-

plies soft thresholding to update parameters for sparse optimization.

Example: For J(θ) = ∥θ − y∥22 + λ∥θ∥1, apply shrinkage to each θi.

Implementation:

def ista(gradient, theta, eta, lam, steps):

def soft_threshold(x, lam):

return np.sign(x) * max(0, abs(x) - lam)

for _ in range(steps):

theta -= eta * gradient(theta)

theta = np.vectorize(soft_threshold)(theta, lam * eta)

return theta

92

Penalty Method

Jpenalty(θ) = J(θ) +
1

µ
h(θ)2

Explanation: The penalty method solves constrained optimization

problems by penalizing constraint violations in the objective function.

Example: For h(θ) = ∥θ∥22 − 1, penalize deviations from the unit ball

constraint.

Implementation:

def penalty_method(loss, theta, penalty, mu):

return loss(theta) + penalty(theta)**2 / mu

93

Augmented Lagrangian Method

L(θ, λ, µ) = J(θ) + λh(θ) +
µ

2
h(θ)2

Explanation: The augmented Lagrangian method combines Lagrangian

and penalty approaches to solve constrained optimization problems. It al-

ternates between updating parameters and Lagrange multipliers.

Example: For J(θ) = ∥θ∥22 and h(θ) = ∥θ∥1 − 1, compute updates for

θ, λ, and µ.

Implementation:

def augmented_lagrangian(loss, h, theta, lam, mu, steps):

for _ in range(steps):

lagrangian = loss(theta) + lam * h(theta) + (mu / 2) * h(theta)**2

theta -= np.gradient(lagrangian)

lam += mu * h(theta)

return theta

94

Dual Ascent Method

λ(t+1) = λ(t) + ηh(θ(t))

Explanation: The dual ascent method optimizes the dual problem of

constrained optimization by updating the Lagrange multipliers iteratively.

Example: For h(θ) = ∥θ∥1 − 1, update λ based on the constraint

violation.

Implementation:

def dual_ascent(loss, h, theta, lam, eta, steps):

for _ in range(steps):

theta -= eta * np.gradient(loss(theta) + lam * h(theta))

lam += eta * h(theta)

return theta, lam

95

Trust Region Method

θ(t+1) = argmin
∆
{J(θ) +∇J(θ)T∆+

1

2
∆TH∆ | ∥∆∥ ≤ ∆max}

Explanation: The trust region method restricts the step size to a

region where the quadratic approximation of the cost function is valid,

ensuring stability.

Example: For J(θ) = ∥θ−y∥22, compute steps ∆ constrained by ∥∆∥ ≤

∆max.

Implementation:

def trust_region(loss, gradient, hessian, theta, delta_max, steps):

for _ in range(steps):

grad = gradient(theta)

hess = hessian(theta)

delta = np.linalg.solve(hess, -grad)

if np.linalg.norm(delta) > delta_max:

delta *= delta_max / np.linalg.norm(delta)

theta += delta

return theta

96

Barrier Method

Jbarrier(θ) = J(θ)− 1

µ

m∑
i=1

ln(−hi(θ))

Explanation: The barrier method solves constrained optimization by

penalizing constraint violations with a logarithmic barrier, keeping updates

within the feasible region.

Example: For h(θ) = ∥θ∥1− 1, use − ln(1−∥θ∥1) as the barrier term.

Implementation:

def barrier_method(loss, h, theta, mu, steps):

for _ in range(steps):

barrier = -np.sum(np.log(-h(theta)))

theta -= np.gradient(loss(theta) + (1 / mu) * barrier)

mu *= 0.9

return theta

97

Simulated Annealing

P (∆E) = exp

(
−∆E

T

)

Explanation: Simulated annealing is a probabilistic optimization al-

gorithm inspired by annealing in metallurgy. It explores the solution space

by accepting worse solutions probabilistically to escape local minima.

Example: Minimize J(θ) = θ2 with an initial temperature T = 1,

gradually cooling down.

Implementation:

import numpy as np

def simulated_annealing(loss, theta, T, cooling_rate, steps):

for _ in range(steps):

new_theta = theta + np.random.uniform(-1, 1, size=theta.shape)

delta_E = loss(new_theta) - loss(theta)

if delta_E < 0 or np.exp(-delta_E / T) > np.random.rand():

theta = new_theta

T *= cooling_rate

return theta

98

SECTION 5 : REGRESSION

Linear Regression Hypothesis

ŷ = Xβ + ϵ

Explanation: The hypothesis for linear regression assumes that the

target variable y is a linear combination of features X, coefficients β, and

an error term ϵ.

Example: For y = 2x1 + 3x2 + ϵ, predict y as a linear function of x1

and x2.

Implementation:

import numpy as np

X = np.array([[1, 2], [3, 4]])

beta = np.array([2, 3])

y_pred = X @ beta

99

Ordinary Least Squares (OLS)

β = (XTX)−1XTy

Explanation: OLS finds the coefficient vector β that minimizes the

sum of squared residuals between predicted and actual values.

Example: For X =

1 2

3 4

 and y =

 5

11

, compute β.

Implementation:

beta = np.linalg.inv(X.T @ X) @ X.T @ y

100

Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Explanation: MSE quantifies the average squared difference between

actual and predicted values. It is a standard loss function in regression.

Example: For y = [1, 2, 3] and ŷ = [1.1, 1.9, 3.2], compute the MSE.

Implementation:

mse = np.mean((y - y_pred)**2)

101

Gradient of the MSE Loss

∂

∂β
MSE = − 2

n
XT (y −Xβ)

Explanation: The gradient of MSE with respect to β is used in

gradient-based optimization algorithms like gradient descent.

Example: Compute the gradient for X =

1 2

3 4

, y = [5, 11], and

β = [1, 1].

Implementation:

grad = -2 / len(y) * X.T @ (y - X @ beta)

102

Coefficient of Determination (R²)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

Explanation: R² measures the proportion of variance in the target

variable explained by the model. A value close to 1 indicates a good fit.

Example: For y = [1, 2, 3] and ŷ = [1.1, 1.9, 3.2], compute R2.

Implementation:

r2 = 1 - np.sum((y - y_pred)**2) / np.sum((y - np.mean(y))**2)

103

Adjusted R²

R̄2 = 1− (1−R2)(n− 1)

n− p− 1

Explanation: Adjusted R² accounts for the number of predictors p in

the model, penalizing overfitting.

Example: For R2 = 0.9, n = 100, and p = 5, compute R̄2.

Implementation:

adjusted_r2 = 1 - (1 - r2) * (n - 1) / (n - p - 1)

104

Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi|

Explanation: MAE measures the average magnitude of prediction er-

rors. It is less sensitive to outliers compared to MSE.

Example: For y = [1, 2, 3] and ŷ = [1.1, 1.9, 3.2], compute the MAE.

Implementation:

mae = np.mean(np.abs(y - y_pred))

105

Weighted Least Squares (WLS)

β = (XTWX)−1XTWy

Explanation: WLS minimizes the sum of weighted residuals, allowing

for heteroscedasticity in the data.

Example: For W = diag([1, 2]), compute β.

Implementation:

W = np.diag([1, 2])

beta = np.linalg.inv(X.T @ W @ X) @ X.T @ W @ y

106

Polynomial Regression Hypothesis

ŷ = β0 + β1x+ β2x
2 + · · ·+ βnx

n

Explanation: Polynomial regression models the relationship between

x and y as a polynomial. It generalizes linear regression to non-linear

patterns.

Example: Fit y = 2x+ x2.

Implementation:

from numpy.polynomial.polynomial import Polynomial

poly = Polynomial.fit(X, y, deg=2)

y_pred = poly(X)

107

Non-Linear Regression

ŷ = f(X,β) + ϵ

Explanation: Non-linear regression models relationships where the

target variable is a non-linear function of the parameters.

Example: Fit y = aebx using optimization.

Implementation:

from scipy.optimize import curve_fit

def model(X, a, b):

return a * np.exp(b * X)

params, _ = curve_fit(model, X, y)

108

Maximum Likelihood Estimation for Regression

β̂ = argmax
β

n∏
i=1

p(yi | Xi,β)

Explanation: MLE estimates the parameters that maximize the like-

lihood of observing the data under a probabilistic model.

Example: Estimate β assuming Gaussian noise.

Implementation:

from scipy.optimize import minimize

def neg_log_likelihood(beta, X, y):

residuals = y - X @ beta

return np.sum(residuals**2)

beta = minimize(neg_log_likelihood, np.zeros(X.shape[1]), args=(X, y)).x

109

Empirical Risk Minimization

θ̂ = argmin
θ

1

n

n∑
i=1

ℓ(yi, f(Xi,θ))

Explanation: ERM minimizes the average loss over the training data

to estimate the model parameters.

Example: Minimize MSE loss for linear regression.

Implementation:

def empirical_risk(theta, X, y, loss):

return np.mean([loss(y[i], np.dot(X[i], theta)) for i in range(len(y))])

110

Logistic Regression Hypothesis

ŷ = σ(Xβ), σ(z) =
1

1 + e−z

Explanation: Logistic regression predicts probabilities for binary clas-

sification using the sigmoid function applied to a linear combination of

inputs.

Example: For X =

1 2

3 4

 and β =

 1

−1

, compute ŷ.

Implementation:

def sigmoid(z):

return 1 / (1 + np.exp(-z))

y_pred = sigmoid(X @ beta)

111

Binary Cross-Entropy Loss

L = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

Explanation: Binary cross-entropy measures the dissimilarity between

predicted probabilities and true labels in binary classification.

Example: For y = [1, 0] and ŷ = [0.9, 0.1], compute the loss.

Implementation:

loss = -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

112

Cross-Entropy Loss (Multi-Class)

L = − 1

n

n∑
i=1

k∑
j=1

yij log(ŷij)

Explanation: Cross-entropy loss generalizes to multi-class classifica-

tion, comparing one-hot-encoded true labels with predicted probabilities.

Example: For y = [1, 0, 0] and ŷ = [0.8, 0.1, 0.1], compute the loss.

Implementation:

loss = -np.mean(np.sum(y * np.log(y_pred), axis=1))

113

Hinge Loss for SVM

L =
1

n

n∑
i=1

max(0, 1− yiŷi)

Explanation: Hinge loss penalizes predictions that are not at least

1 margin away from the correct classification in support vector machines

(SVMs).

Example: For y = [1,−1] and ŷ = [0.8,−0.5], compute the loss.

Implementation:

loss = np.mean(np.maximum(0, 1 - y * y_pred))

114

Lasso Regression Objective

L =
1

2n
∥y −Xβ∥22 + λ∥β∥1

Explanation: Lasso regression adds an L1 regularization term to the

least squares loss, promoting sparsity in the coefficients.

Example: For λ = 0.1, add ∥β∥1 as a penalty.

Implementation:

loss = 0.5 * np.mean((y - X @ beta)**2) + lam * np.sum(np.abs(beta))

115

Ridge Regression Objective

L =
1

2n
∥y −Xβ∥22 + λ∥β∥22

Explanation: Ridge regression adds an L2 regularization term to re-

duce overfitting by shrinking coefficients.

Example: For λ = 0.1, compute the loss with L2 regularization.

Implementation:

loss = 0.5 * np.mean((y - X @ beta)**2) + lam * np.sum(beta**2)

116

Negative Binomial Regression

ŷ =
Γ(y + α)

Γ(y + 1)Γ(α)

(
α

α + µ̂

)α(
µ̂

α + µ̂

)y

Explanation: Negative binomial regression models count data with

overdispersion using a generalized linear model.

Example: Fit a model for overdispersed count data.

Implementation:

from statsmodels.api import GLM, families

model = GLM(y, X, family=families.NegativeBinomial())

results = model.fit()

117

Poisson Regression Model

µ̂ = eXβ

Explanation: Poisson regression models count data using a log link

function, assuming the target variable follows a Poisson distribution.

Example: Predict event counts given feature data.

Implementation:

from statsmodels.api import GLM, families

model = GLM(y, X, family=families.Poisson())

results = model.fit()

118

Gamma Regression Objective

L =
1

ϕ

n∑
i=1

(
− log(µ̂i) +

yi
µ̂i

)

Explanation: Gamma regression models positive continuous data with

a Gamma distribution, often for skewed datasets.

Example: Predict insurance claims amounts.

Implementation:

from statsmodels.api import GLM, families

model = GLM(y, X, family=families.Gamma())

results = model.fit()

119

Probit Regression Model

P (y = 1) = Φ(Xβ)

Explanation: Probit regression models binary classification using the

cumulative normal distribution function Φ.

Example: Predict binary outcomes using a probit link.

Implementation:

from statsmodels.api import GLM, families

model = GLM(y, X, family=families.Binomial(link=families.links.probit()))

results = model.fit()

120

Multinomial Logistic Regression

P (y = k) =
eXβk∑K
j=1 e

Xβj

Explanation: Multinomial logistic regression generalizes logistic re-

gression for multi-class classification tasks.

Example: Classify samples into one of K = 3 classes.

Implementation:

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(multi_class=’multinomial’)

model.fit(X, y)

121

Quantile Regression Loss

L =
n∑

i=1

ρτ (yi − ŷi), ρτ (e) = max(τe, (1− τ)e)

Explanation: Quantile regression minimizes the weighted sum of resid-

uals, modeling conditional quantiles of the target variable.

Example: Estimate the 90th percentile of target values.

Implementation:

from statsmodels.api import QuantReg

model = QuantReg(y, X)

results = model.fit(q=0.9)

122

Huber Loss

L =
n∑

i=1


1
2
(yi − ŷi)

2, if |yi − ŷi| ≤ δ

δ|yi − ŷi| − 1
2
δ2, otherwise

Explanation: Huber loss combines MSE and MAE, being quadratic

for small errors and linear for large errors, robust to outliers.

Example: Fit a regression model robust to outliers with δ = 1.

Implementation:

def huber_loss(y, y_pred, delta):

diff = np.abs(y - y_pred)

return np.where(diff <= delta, 0.5 * diff**2, delta * diff - 0.5 * delta**2)

123

SECTION 6 : NEURAL

NETWORKS

Perceptron Update Rule

w(t+1) = w(t) + η(y − ŷ)x

Explanation: The perceptron update rule adjusts weights based on

prediction errors. It is used for binary classification in linearly separable

data.

Example: For x = [1, 2], y = 1, ŷ = 0, and η = 0.1, update w.

Implementation:

w += eta * (y - y_pred) * x

124

Forward Propagation (Single Layer)

ŷ = σ(Xw + b)

Explanation: Forward propagation computes predictions by applying

a weight matrix and activation function to input features.

Example: For X = [1, 2], w = [0.5, 0.5], and b = 0, compute ŷ.

125

Sigmoid Activation

σ(z) =
1

1 + e−z

Explanation: The sigmoid activation maps inputs to [0, 1], commonly

used for binary classification.

Example: For z = 0.5, compute σ(0.5).

Implementation:

def sigmoid(z):

return 1 / (1 + np.exp(-z))

126

Tanh Activation

tanh(z) =
ez − e−z

ez + e−z

Explanation: Tanh activation maps inputs to [−1, 1] and is useful for

symmetric data.

Example: For z = 0.5, compute tanh(0.5).

Implementation:

def tanh(z):

return np.tanh(z)

127

ReLU Activation

ReLU(z) = max(0, z)

Explanation: ReLU introduces non-linearity by zeroing negative val-

ues, often used in deep networks.

Example: For z = −1, compute ReLU(−1).

Implementation:

def relu(z):

return np.maximum(0, z)

128

Heaviside Step Activation

H(z) =

1, z ≥ 0

0, z < 0

Explanation: The Heaviside step function outputs binary values for

classification tasks.

Example: For z = −1, compute H(−1).

Implementation:

def heaviside(z):

return np.where(z >= 0, 1, 0)

129

Leaky ReLU Activation

Leaky ReLU(z) =

z, z ≥ 0

αz, z < 0

Explanation: Leaky ReLU allows small gradients for negative inputs,

mitigating dead neurons.

Example: For z = −1 and α = 0.01, compute Leaky ReLU(−1).

Implementation:

def leaky_relu(z, alpha=0.01):

return np.where(z >= 0, z, alpha * z)

130

ELU Activation (Exponential Linear Unit)

ELU(z) =

z, z ≥ 0

α(ez − 1), z < 0

Explanation: ELU smooths ReLU by providing exponential outputs

for negative inputs, improving gradient flow.

Example: For z = −1 and α = 1, compute ELU(−1).

Implementation:

def elu(z, alpha=1):

return np.where(z >= 0, z, alpha * (np.exp(z) - 1))

131

Softmax Function

Softmax(z)i =
ezi∑n
j=1 e

zj

Explanation: Softmax normalizes a vector into a probability distribu-

tion over n classes.

Example: For z = [1, 2, 3], compute Softmax(z).

Implementation:

def softmax(z):

exp_z = np.exp(z - np.max(z)) # Numerical stability

return exp_z / exp_z.sum(axis=0)

132

Loss Function for Multi-Class (Cross-Entropy)

L = − 1

n

n∑
i=1

k∑
j=1

yij log(ŷij)

Explanation: Cross-entropy loss measures the dissimilarity between

predicted probabilities and true labels in multi-class classification.

Example: For y = [1, 0, 0] and ŷ = [0.8, 0.1, 0.1], compute the loss.

Implementation:

loss = -np.mean(np.sum(y * np.log(y_pred), axis=1))

133

Gradient Descent for Neural Networks

θ(t+1) = θ(t) − η
∂L
∂θ

Explanation: Gradient descent updates the network’s weights by min-

imizing the loss function using gradients.

Example: Update θ for L = (y − ŷ)2.

134

Backpropagation (Gradient for Weights)

∂L
∂wij

= δjai, δj =
∂L
∂zj

σ′(zj)

Explanation: Backpropagation computes the gradient of the loss func-

tion with respect to the weights in a neural network using the chain rule.

Example: Compute gradients for a single-layer neural network.

Implementation:

delta = (y_pred - y) * sigmoid_prime(z)

grad_w = np.outer(delta, a)

135

Mean Squared Error Loss

L =
1

n

n∑
i=1

(yi − ŷi)
2

Explanation: Mean squared error measures the average squared differ-

ence between predictions and actual values, commonly used in regression.

Example: For y = [1, 2] and ŷ = [1.1, 1.8], compute the loss.

Implementation:

loss = np.mean((y - y_pred)**2)

136

Binary Cross-Entropy Loss

L = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

Explanation: Binary cross-entropy measures the difference between

predicted probabilities and true binary labels.

Example: For y = [1, 0] and ŷ = [0.9, 0.1], compute the loss.

Implementation:

loss = -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

137

Batch Normalization

x̂ =
x− µ√
σ2 + ϵ

, y = γx̂+ β

Explanation: Batch normalization normalizes inputs to a layer, re-

ducing internal covariate shift and accelerating training.

Example: Normalize x = [1, 2, 3] with γ = 1, β = 0.

Implementation:

mean = np.mean(x)

var = np.var(x)

x_norm = (x - mean) / np.sqrt(var + epsilon)

y = gamma * x_norm + beta

138

Dropout Regularization

âi =

0, with probability p

ai
1−p

, otherwise

Explanation: Dropout randomly sets a fraction p of activations to

zero during training to prevent overfitting.

Example: Apply dropout to activations a = [1, 2, 3] with p = 0.5.

Implementation:

mask = np.random.rand(len(a)) > p

a_dropout = a * mask / (1 - p)

139

Gradient of Sigmoid

σ′(z) = σ(z)(1− σ(z))

Explanation: The derivative of the sigmoid function is used in back-

propagation to compute gradients efficiently.

Example: For z = 0.5, compute σ′(0.5).

Implementation:

def sigmoid_prime(z):

s = sigmoid(z)

return s * (1 - s)

140

RMSProp for Weight Updates

s(t+1) = βs(t) + (1− β)g2, w(t+1) = w(t) − η√
s(t+1) + ϵ

g

Explanation: RMSProp adapts the learning rate for each weight based

on the moving average of squared gradients.

Implementation:

s = beta * s + (1 - beta) * grad**2

w -= eta / (np.sqrt(s) + epsilon) * grad

141

Xavier (Glorot) Initialization

w ∼ U(−
√

6

nin + nout

,

√
6

nin + nout

)

Explanation: Xavier initialization sets weights to maintain variance

across layers, improving convergence in deep networks.

Implementation:

limit = np.sqrt(6 / (n_in + n_out))

w = np.random.uniform(-limit, limit, size=(n_in, n_out))

142

L2 Regularization (Weight Decay)

L = L0 +
λ

2
∥w∥22

Explanation: L2 regularization adds a penalty proportional to the

square of weights to prevent overfitting.

143

Heaviside vs. Hard Sigmoid

Hard Sigmoid(z) = max(0,min(1, 0.2z + 0.5))

Explanation: Heaviside is a binary activation function, while Hard

Sigmoid approximates sigmoid for efficiency.

Implementation:

def hard_sigmoid(z):

return np.clip(0.2 * z + 0.5, 0, 1)

144

Swish Activation

Swish(z) = z · σ(z)

Explanation: Swish is a smooth, non-monotonic activation function

that often outperforms ReLU in deep networks.

Implementation:

def swish(z):

return z * sigmoid(z)

145

Maxout Activation

Maxout(z) = max
i∈[1,k]

zi

Explanation: Maxout selects the maximum value from k linear func-

tions, enabling learnable piecewise linear activations.

Implementation:

def maxout(z):

return np.max(z, axis=0)

146

Sparse Categorical Cross-Entropy

L = − 1

n

n∑
i=1

log(ŷi,yi)

Explanation: Sparse categorical cross-entropy simplifies the loss cal-

culation by directly indexing the true class probabilities.

Implementation:

loss = -np.mean(np.log(y_pred[range(len(y)), y]))

147

Cosine Similarity / Cosine Loss

Cosine Similarity =
u · v
∥u∥∥v∥

Explanation: Cosine similarity measures the angle between vectors,

commonly used in text and embedding similarity.

Implementation:

cos_sim = np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v))

148

SECTION 7 : CLUSTERING

Distance Metric (Euclidean)

d(u,v) =

√√√√ n∑
i=1

(ui − vi)2

Explanation: Euclidean distance measures the straight-line distance

between two points in n-dimensional space. It is widely used in clustering

and nearest-neighbor methods.

Example: For u = [1, 2] and v = [3, 4], d(u,v) =
√

(3− 1)2 + (4− 2)2 =
√
8.

Implementation:

def euclidean_distance(u, v):

return np.sqrt(np.sum((u - v)**2))

149

Manhattan Distance

d(u,v) =
n∑

i=1

|ui − vi|

Explanation: Manhattan distance measures the sum of absolute differ-

ences between corresponding components, resembling city block distances.

Example: For u = [1, 2] and v = [3, 4], d(u,v) = |3−1|+ |4−2| = 4.

Implementation:

def manhattan_distance(u, v):

return np.sum(np.abs(u - v))

150

Cosine Similarity

Cosine Similarity =
u · v
∥u∥∥v∥

Explanation: Cosine similarity measures the cosine of the angle be-

tween two vectors, capturing orientation rather than magnitude.

Example: For u = [1, 0] and v = [0, 1], similarity is 0.

Implementation:

def cosine_similarity(u, v):

return np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v))

151

Jaccard Similarity (Binary Data)

Jaccard Similarity =
|u ∩ v|
|u ∪ v|

Explanation: Jaccard similarity compares the intersection and union

of binary data, commonly used in text and set-based similarity.

Example: For u = [1, 1, 0] and v = [1, 0, 1], similarity is 1
3
.

Implementation:

def jaccard_similarity(u, v):

return np.sum(np.logical_and(u, v)) / np.sum(np.logical_or(u, v))

152

k-Means Objective

J =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2

Explanation: The k-means objective minimizes the sum of squared

distances between data points and their assigned cluster centroids.

Example: For points [1, 2], [3, 4] in cluster C1 with centroid [2, 3],

compute J .

Implementation:

def k_means_objective(X, centroids, labels):

return np.sum(np.linalg.norm(X - centroids[labels], axis=1)**2)

153

Centroid Update Rule (k-Means)

µi =
1

|Ci|
∑
xj∈Ci

xj

Explanation: The centroid of each cluster is updated as the mean of

points assigned to it.

Example: For cluster C1 = {[1, 2], [3, 4]}, compute µ1 = [2, 3].

Implementation:

def update_centroids(X, labels, k):

return np.array([X[labels == i].mean(axis=0) for i in range(k)])

154

Elbow Method for Optimal k

J(k) =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2

Explanation: The elbow method finds the optimal number of clusters

k by identifying the ”elbow” in the plot of J(k) versus k.

Implementation:

def elbow_method(X, max_k):

distortions = []

for k in range(1, max_k + 1):

kmeans = KMeans(n_clusters=k).fit(X)

distortions.append(kmeans.inertia_)

return distortions

155

k-Medoids Objective

J =
k∑

i=1

∑
xj∈Ci

d(xj,mi)

Explanation: k-Medoids minimizes the sum of distances between data

points and their cluster medoids, robust to outliers.

Example: Replace centroids with medoids for robust clustering.

Implementation:

def k_medoids_objective(X, medoids, labels):

return np.sum([np.sum(np.linalg.norm(X[labels == i]

- medoids[i], axis=1)) for i in range(len(medoids))])

156

Fuzzy c-Means Objective

J =
c∑

i=1

n∑
j=1

um
ij∥xj − ci∥2

Explanation: Fuzzy c-means assigns membership values uij to each

data point for each cluster, allowing soft clustering.

Implementation:

def fuzzy_c_means_objective(X, centroids, memberships, m):

return np.sum(memberships**m * np.linalg.norm(X[:, None]

- centroids, axis=2)**2)

157

Silhouette Score

S =
b− a

max(a, b)
, a = intra-cluster distance, b = nearest-cluster distance

Explanation: Silhouette score evaluates the quality of clustering by

comparing intra-cluster and nearest-cluster distances.

Implementation:

from sklearn.metrics import silhouette_score

score = silhouette_score(X, labels)

158

Hierarchical Clustering Dendrogram

d(C1, C2) = min
x∈C1,y∈C2

∥x− y∥

Explanation: A dendrogram visually represents the hierarchical clus-

tering process, showing cluster merges.

Implementation:

from scipy.cluster.hierarchy import dendrogram, linkage

Z = linkage(X, method=’ward’)

dendrogram(Z)

159

Ward’s Linkage

d(C1, C2) =
|C1||C2|
|C1|+ |C2|

∥µ1 − µ2∥2

Explanation: Ward’s linkage minimizes the variance increase when

merging clusters, resulting in compact clusters.

Implementation:

from scipy.cluster.hierarchy import linkage

Z = linkage(X, method=’ward’)

160

Single vs. Complete Linkage

dsingle(C1, C2) = min
x∈C1,y∈C2

∥x− y∥, dcomplete(C1, C2) = max
x∈C1,y∈C2

∥x− y∥

Explanation: Single linkage merges clusters based on the smallest

distance between points, while complete linkage uses the largest distance.

They influence the shape of hierarchical clustering.

Implementation:

from scipy.cluster.hierarchy import linkage

Z_single = linkage(X, method=’single’)

Z_complete = linkage(X, method=’complete’)

161

Average Linkage

daverage(C1, C2) =
1

|C1||C2|
∑
x∈C1

∑
y∈C2

∥x− y∥

Explanation: Average linkage computes the average distance between

all pairs of points in two clusters, balancing the extremes of single and

complete linkage.

Implementation:

Z_average = linkage(X, method=’average’)

162

Minimum Spanning Tree Criterion

MST weight =
∑

(u,v)∈E

w(u, v), w(u, v) = ∥u− v∥

Explanation: The minimum spanning tree (MST) connects all points

with the minimum total edge weight, often used in clustering to detect

dense regions.

Implementation:

from scipy.sparse.csgraph import minimum_spanning_tree

mst = minimum_spanning_tree(distance_matrix(X))

163

DBSCAN Core Point Condition

|Neighbors(x)| ≥ MinPts, where Neighbors(x) = {y : ∥x− y∥ ≤ ϵ}

Explanation: A core point in DBSCAN must have at least MinPts

neighbors within a distance ϵ.

Implementation:

core_condition = len(neighbors) >= MinPts

164

DBSCAN Density Condition

Density-connected: ∃ a chain of points x1,x2, . . . ,xn such that ∥xi−xi+1∥ ≤ ϵ

Explanation: DBSCAN forms clusters by connecting points that are

density-reachable through chains of neighbors.

Implementation:

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=epsilon, min_samples=MinPts).fit(X)

165

Cohesion Metric

Cohesion =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2

Explanation: Cohesion measures the compactness of clusters, where

smaller values indicate tighter clusters.

Implementation:

cohesion = sum(np.linalg.norm(X[labels == i]

- centroids[i], axis=1).sum() for i in range(k))

166

Separation Metric

Separation =
k∑

i=1

k∑
j=i+1

∥µi − µj∥2

Explanation: Separation measures the distance between cluster cen-

troids, where larger values indicate well-separated clusters.

Implementation:

separation = sum(np.linalg.norm(centroids[i]

- centroids[j])**2 for i in range(k) for j in range(i+1, k))

167

Soft Clustering Membership

uij =
∥xj − ci∥−2/(m−1)∑c
k=1 ∥xj − ck∥−2/(m−1)

Explanation: Soft clustering assigns membership values uij to each

point for each cluster, indicating the degree of belonging.

Implementation:

memberships = 1 / (distances**(2/(m-1)) / distances.sum(axis=1, keepdims=True))

168

Entropy for Clustering Evaluation

H = −
k∑

i=1

n∑
j=1

Pij logPij

Explanation: Entropy measures the uncertainty in clustering assign-

ments, where lower values indicate clearer clustering.

Implementation:

entropy = -np.sum(P * np.log(P))

169

Mutual Information for Clustering

I(U, V) =

|U |∑
i=1

|V |∑
j=1

Pij log
Pij

PiPj

Explanation: Mutual information measures the shared information

between true and predicted clusters.

Implementation:

from sklearn.metrics import mutual_info_score

mi = mutual_info_score(true_labels, predicted_labels)

170

F-Measure for Clustering

F =
2 · Precision · Recall
Precision + Recall

Explanation: The F-measure evaluates clustering performance by bal-

ancing precision and recall.

Implementation:

from sklearn.metrics import f1_score

f_measure = f1_score(true_labels, predicted_labels, average=’weighted’)

171

Adjusted Rand Index (ARI)

ARI =
Index− Expected Index

Max Index− Expected Index

Explanation: ARI adjusts the Rand Index for chance, measuring clus-

tering similarity.

Implementation:

from sklearn.metrics import adjusted_rand_score

ari = adjusted_rand_score(true_labels, predicted_labels)

172

Normalized Mutual Information (NMI)

NMI =
2I(U, V)

H(U) +H(V)

Explanation: NMI normalizes mutual information to compare clus-

tering solutions of different sizes.

Implementation:

from sklearn.metrics import normalized_mutual_info_score

nmi = normalized_mutual_info_score(true_labels, predicted_labels)

173

SECTION 8 : DIMENSIONALITY

REDUCTION

Principal Component Analysis (PCA) Objective

Maximize: Var(z) = wTSw, subject to ∥w∥2 = 1

Explanation: PCA seeks directions (principal components) that max-

imize the variance of projected data while being orthogonal to each other.

Implementation:

from sklearn.decomposition import PCA

pca = PCA(n_components=k).fit(X)

174

Covariance Matrix for PCA

S =
1

n− 1
(X− X̄)T (X− X̄)

Explanation: The covariance matrix captures pairwise feature depen-

dencies and is central to PCA.

Implementation:

mean_X = np.mean(X, axis=0)

cov_matrix = np.cov(X - mean_X, rowvar=False)

175

Eigen Decomposition for PCA

Sw = λw

Explanation: PCA uses eigen decomposition of the covariance matrix

to find eigenvalues (variances) and eigenvectors (principal components).

Implementation:

eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

176

SVD (Singular Value Decomposition)

X = UΣVT

Explanation: SVD factorizes a matrix into orthogonal components,

enabling dimensionality reduction by truncating Σ.

Implementation:

U, S, Vt = np.linalg.svd(X, full_matrices=False)

177

Reconstruction Error for PCA

Error = ∥X− X̂∥2F , X̂ = ZWT + X̄

Explanation: Reconstruction error quantifies the information loss when

reducing dimensionality with PCA.

Implementation:

X_hat = Z @ W.T + mean_X

reconstruction_error = np.linalg.norm(X - X_hat, ’fro’)**2

178

Explained Variance Ratio

Explained Variance Ratio =
λi∑n
j=1 λj

Explanation: The explained variance ratio quantifies the proportion

of variance captured by each principal component.

Implementation:

explained_variance_ratio = eigenvalues / np.sum(eigenvalues)

179

Cumulative Explained Variance

Cumulative Explained Variance =
k∑

i=1

λi∑n
j=1 λj

Explanation: Cumulative explained variance evaluates the total vari-

ance captured by the first k principal components.

Implementation:

cumulative_explained_variance = np.cumsum(explained_variance_ratio)

180

Random Projection

Xproj = XR, R ∼ N (0, 1)

Explanation: Random projection reduces dimensionality by project-

ing data onto a lower-dimensional random matrix while approximately pre-

serving distances.

Implementation:

from sklearn.random_projection import GaussianRandomProjection

rp = GaussianRandomProjection(n_components=k).fit_transform(X)

181

Isomap Distance Matrix

dij = Shortest Path Distance on G, G = (X, ϵ-Neighborhoods)

Explanation: Isomap computes geodesic distances in a graph of near-

est neighbors to preserve non-linear structures in the data.

Implementation:

from sklearn.manifold import Isomap

isomap = Isomap(n_neighbors=k).fit_transform(X)

182

MDS Stress Function

Stress =
∑
i<j

(
dij − d̂ij

)2

Explanation: The stress function measures the discrepancy between

original and embedded distances in Multidimensional Scaling (MDS).

Implementation:

from sklearn.manifold import MDS

mds = MDS(n_components=2).fit_transform(X)

183

Multidimensional Scaling (MDS)

XMDS = argmin
Y

Stress(Y)

Explanation: MDS embeds data into a lower-dimensional space while

preserving pairwise distances as much as possible.

Implementation:

from sklearn.manifold import MDS

mds = MDS(n_components=k).fit_transform(X)

184

NMF (Non-Negative Matrix Factorization)

X ≈WH, W ≥ 0, H ≥ 0

Explanation: NMF factorizes a non-negative matrix into two lower-

rank non-negative matrices, often used in topic modeling and image pro-

cessing.

Implementation:

from sklearn.decomposition import NMF

nmf = NMF(n_components=k).fit_transform(X)

185

ICA (Independent Component Analysis) Objective

Maximize:
n∑

i=1

log p(si), where s = WX

Explanation: ICA separates mixed signals into statistically indepen-

dent components by maximizing non-Gaussianity.

Implementation:

from sklearn.decomposition import FastICA

ica = FastICA(n_components=k).fit_transform(X)

186

Factor Analysis Model

X = ZΛ+ ϵ, ϵ ∼ N (0,Ψ)

Explanation: Factor analysis models observed variables as linear com-

binations of latent factors plus noise.

Implementation:

from sklearn.decomposition import FactorAnalysis

fa = FactorAnalysis(n_components=k).fit_transform(X)

187

Kernel PCA Transformation

K = ϕ(X)ϕ(X)T , Eigen Decomposition: Kα = λα

Explanation: Kernel PCA applies PCA in a high-dimensional feature

space defined by a kernel function.

Implementation:

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(kernel=’rbf’, n_components=k).fit_transform(X)

188

LDA (Fisher’s Criterion)

J(w) =
wTSBw

wTSWw

Explanation: LDA finds a projection that maximizes class separation

by optimizing the ratio of between-class to within-class variance.

Implementation:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

lda = LinearDiscriminantAnalysis(n_components=k).fit_transform(X, y)

189

Robust PCA (RPCA)

X = L+ S, ∥L∥∗ + λ∥S∥1

Explanation: RPCA decomposes a matrix into a low-rank component

(L) and a sparse component (S).

Implementation:

from r_pca import R_pca

rpca = R_pca(X)

L, S = rpca.fit()

190

Hessian LLE

Minimize: ∥WX−X∥22, subject to local Hessian alignment

Explanation: Hessian LLE preserves local geometric structures while

optimizing a low-dimensional embedding.

Implementation:

from sklearn.manifold import LocallyLinearEmbedding

hessian_lle = LocallyLinearEmbedding(n_neighbors=k,

method=’hessian’).fit_transform(X)

191

Laplacian Eigenmaps Objective

Minimize:
∑
i,j

wij∥yi − yj∥2, W = Graph Weights

Explanation: Laplacian Eigenmaps embeds data while preserving lo-

cal neighborhood information based on a graph structure.

Implementation:

from sklearn.manifold import SpectralEmbedding

laplacian = SpectralEmbedding(n_components=k).fit_transform(X)

192

Autoencoder Reconstruction

X̂ = Decoder(Encoder(X))

Explanation: Autoencoders minimize reconstruction error by com-

pressing data into a latent representation and reconstructing it.

Implementation:

from keras.models import Model

encoded = encoder(X)

decoded = decoder(encoded)

193

Autoencoder Latent Representation

Z = Encoder(X)

Explanation: The latent representation (Z) compresses input data

into a lower-dimensional space for downstream tasks.

Implementation:

latent_representation = encoder.predict(X)

194

Sparse PCA Objective

Maximize: ∥XW∥22, subject to sparsity constraints on W

Explanation: Sparse PCA introduces sparsity in the principal compo-

nents to improve interpretability.

Implementation:

from sklearn.decomposition import SparsePCA

spca = SparsePCA(n_components=k).fit_transform(X)

195

t-SNE Objective

Minimize: KL(P ||Q) =
∑
i ̸=j

Pij log
Pij

Qij

Explanation: t-SNE minimizes the Kullback-Leibler divergence be-

tween high-dimensional and low-dimensional distributions.

Implementation:

from sklearn.manifold import TSNE

tsne = TSNE(n_components=k).fit_transform(X)

196

Gradient of t-SNE

∂KL

∂yi
= 4

∑
j

(Pij −Qij)(yi − yj)Qij

Explanation: The gradient of the t-SNE objective updates low-dimensional

embeddings to align distributions.

197

UMAP (Uniform Manifold Approximation and Pro-

jection)

Optimize:
∑
i,j

wij∥yi − yj∥2 − λ
∑
k,l

wkl log(∥yk − yl∥)

Explanation: UMAP preserves local and global structures by opti-

mizing a balance between distances and densities.

Implementation:

import umap

umap_embedding = umap.UMAP(n_components=k).fit_transform(X)

198

SECTION 9 : PROBABILITY

DISTRIBUTIONS

Bernoulli Distribution

P (X = x) = px(1− p)1−x, x ∈ {0, 1}, 0 ≤ p ≤ 1

Explanation: The Bernoulli distribution models a single binary event,

with success probability p.

Example: For p = 0.7, P (X = 1) = 0.7, P (X = 0) = 0.3.

Implementation:

from scipy.stats import bernoulli

prob = bernoulli.pmf(k=1, p=0.7)

199

Binomial Distribution

P (X = k) =

(
n

k

)
pk(1− p)n−k, k ∈ {0, 1, . . . , n}

Explanation: The Binomial distribution models the number of suc-

cesses in n independent Bernoulli trials.

Example: For n = 5 and p = 0.5, P (X = 3) =
(
5
3

)
(0.5)3(0.5)2 =

0.3125.

Implementation:

from scipy.stats import binom

prob = binom.pmf(k=3, n=5, p=0.5)

200

Poisson Distribution

P (X = k) =
λke−λ

k!
, k ∈ {0, 1, 2, . . .}

Explanation: The Poisson distribution models the number of events

in a fixed interval, with a mean rate λ.

Example: For λ = 3, P (X = 2) = 32e−3

2!
= 0.224.

Implementation:

from scipy.stats import poisson

prob = poisson.pmf(k=2, mu=3)

201

Uniform Distribution (Continuous)

f(x) =
1

b− a
, x ∈ [a, b]

Explanation: The continuous uniform distribution assigns equal prob-

ability density to all points in [a, b].

Example: For a = 0, b = 2, f(1) = 1
2
.

Implementation:

from scipy.stats import uniform

prob = uniform.pdf(x=1, loc=0, scale=2)

202

Discrete Uniform Distribution

P (X = x) =
1

n
, x ∈ {1, 2, . . . , n}

Explanation: The discrete uniform distribution assigns equal proba-

bility to n discrete outcomes.

Example: For n = 6, P (X = 3) = 1
6
.

Implementation:

from scipy.stats import randint

prob = randint.pmf(k=3, low=1, high=7)

203

Normal (Gaussian) Distribution

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

Explanation: The normal distribution models data with a symmetric

bell shape, defined by mean µ and standard deviation σ.

Example: For µ = 0, σ = 1, f(0) = 1√
2π
≈ 0.398.

Implementation:

from scipy.stats import norm

prob = norm.pdf(x=0, loc=0, scale=1)

204

Exponential Distribution

f(x) = λe−λx, x ≥ 0

Explanation: The exponential distribution models the time between

events in a Poisson process.

Example: For λ = 2, f(1) = 2e−2 ≈ 0.271.

Implementation:

from scipy.stats import expon

prob = expon.pdf(x=1, scale=1/2)

205

Geometric Distribution

P (X = k) = (1− p)k−1p, k ∈ {1, 2, . . .}

Explanation: The geometric distribution models the number of trials

until the first success in repeated Bernoulli trials.

Example: For p = 0.5, P (X = 3) = (0.5)2(0.5) = 0.125.

Implementation:

from scipy.stats import geom

prob = geom.pmf(k=3, p=0.5)

206

Hypergeometric Distribution

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)

Explanation: The hypergeometric distribution models successes in n

draws without replacement from a population of N with K successes.

Example: For N = 20, K = 7, n = 5, P (X = 3).

Implementation:

from scipy.stats import hypergeom

prob = hypergeom.pmf(k=3, M=20, n=5, N=7)

207

Beta Distribution

f(x) =
xα−1(1− x)β−1

B(α, β)
, x ∈ [0, 1]

Explanation: The Beta distribution models probabilities as a function

of parameters α and β.

Example: For α = 2, β = 3, compute f(0.5).

Implementation:

from scipy.stats import beta

prob = beta.pdf(x=0.5, a=2, b=3)

208

Gamma Distribution

f(x) =
βαxα−1e−βx

Γ(α)
, x > 0

Explanation: The Gamma distribution generalizes the exponential

distribution, often used for waiting times.

Example: For α = 2, β = 1, compute f(1).

Implementation:

from scipy.stats import gamma

prob = gamma.pdf(x=1, a=2, scale=1/1)

209

Multinomial Distribution

P (X1 = k1, . . . , Xk = kk) =
n!

k1! · · · kk!
pk11 · · · p

kk
k

Explanation: The multinomial distribution generalizes the binomial

distribution for multiple categories.

Example: For n = 3, p = [0.2, 0.5, 0.3], and k = [1, 1, 1].

Implementation:

from scipy.stats import multinomial

prob = multinomial.pmf(x=[1, 1, 1], n=3, p=[0.2, 0.5, 0.3])

210

Chi-Square Distribution

f(x) =
xk/2−1e−x/2

2k/2Γ(k/2)
, x > 0

Explanation: The chi-square distribution models the sum of squares

of k independent standard normal variables, commonly used in hypothesis

testing.

Example: For k = 3, compute f(2).

Implementation:

from scipy.stats import chi2

prob = chi2.pdf(x=2, df=3)

211

Student’s t-Distribution

f(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

Explanation: The Student’s t-distribution is used for estimating pop-

ulation parameters when the sample size is small.

Example: For ν = 5, compute f(1).

Implementation:

from scipy.stats import t

prob = t.pdf(x=1, df=5)

212

F-Distribution

f(x) =

√(
d1x
d2

)d1 (
1 + d1x

d2

)−(d1+d2)/2

xB(d1/2, d2/2)
, x > 0

Explanation: The F-distribution models the ratio of variances and is

commonly used in ANOVA tests.

Implementation:

from scipy.stats import f

prob = f.pdf(x=2, dfn=5, dfd=10)

213

Laplace Distribution

f(x) =
1

2b
e−

|x−µ|
b

Explanation: The Laplace distribution, also known as the double ex-

ponential distribution, is used for modeling differences in data.

Implementation:

from scipy.stats import laplace

prob = laplace.pdf(x=0, loc=0, scale=1)

214

Rayleigh Distribution

f(x) =
x

σ2
e−x2/(2σ2), x ≥ 0

Explanation: The Rayleigh distribution models the magnitude of a

two-dimensional vector with independent normal components.

Implementation:

from scipy.stats import rayleigh

prob = rayleigh.pdf(x=2, scale=1)

215

Triangular Distribution

f(x) =


2(x−a)

(b−a)(c−a)
, a ≤ x < c

2(b−x)
(b−a)(b−c)

, c ≤ x ≤ b

Explanation: The triangular distribution models data with a known

minimum, maximum, and mode.

Implementation:

from scipy.stats import triang

prob = triang.pdf(x=0.5, c=0.5, loc=0, scale=1)

216

Log-Normal Distribution

f(x) =
1

xσ
√
2π

e−
(ln x−µ)2

2σ2 , x > 0

Explanation: The log-normal distribution models data whose loga-

rithm follows a normal distribution.

Implementation:

from scipy.stats import lognorm

prob = lognorm.pdf(x=2, s=1, scale=np.exp(0))

217

Arcsine Distribution

f(x) =
1

π
√

x(1− x)
, x ∈ (0, 1)

Explanation: The arcsine distribution models probabilities with end-

points more likely than the middle.

Implementation:

from scipy.stats import arcsine

prob = arcsine.pdf(x=0.5)

218

Beta-Binomial Distribution

P (X = k) =

(
n

k

)
B(k + α, n− k + β)

B(α, β)

Explanation: The beta-binomial distribution models overdispersed bi-

nomial outcomes using a Beta prior.

Implementation:

from scipy.stats import betabinom

prob = betabinom.pmf(k=2, n=5, a=2, b=3)

219

Cauchy Distribution

f(x) =
1

πγ

[
1 +

(
x−x0

γ

)2
]

Explanation: The Cauchy distribution models data with heavy tails,

often used in robust statistics.

Implementation:

from scipy.stats import cauchy

prob = cauchy.pdf(x=0, loc=0, scale=1)

220

Weibull Distribution

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , x ≥ 0

Explanation: The Weibull distribution is used for reliability analysis

and modeling lifetimes.

Implementation:

from scipy.stats import weibull_min

prob = weibull_min.pdf(x=2, c=1.5, scale=1)

221

Pareto Distribution

f(x) =
αxα

m

xα+1
, x ≥ xm

Explanation: The Pareto distribution models wealth distribution and

heavy-tailed phenomena.

Implementation:

from scipy.stats import pareto

prob = pareto.pdf(x=2, b=1)

222

Log-Cauchy Distribution

f(x) =
1

xπγ

[
1 +

(
lnx−x0

γ

)2
] , x > 0

Explanation: The log-Cauchy distribution is the logarithmic trans-

form of the Cauchy distribution, with heavy tails.

223

SECTION 10 : REINFORCEMENT

LEARNING

Reward Function

R(s, a) = E[Reward | s, a]

Explanation: The reward function provides the immediate reward

received after taking action a in state s, guiding the agent’s behavior.

Implementation:

def reward_function(state, action):

Example reward calculation

return rewards[state, action]

224

Discounted Return

Gt =
∞∑
k=0

γkRt+k+1, 0 ≤ γ < 1

Explanation: The discounted return accumulates rewards over time,

weighting future rewards by the discount factor γ.

Implementation:

def discounted_return(rewards, gamma):

G = 0

for t, r in enumerate(rewards):

G += (gamma**t) * r

return G

225

Bellman Equation (State-Value Function)

V (s) = Eπ[R(s, a) + γV (s′)]

Explanation: The Bellman equation relates the value of a state to the

expected return from it under a policy π.

Implementation:

def bellman_state_value(s, rewards, transition_prob, gamma, V):

return np.sum(transition_prob[s] * (rewards[s] + gamma * V))

226

Bellman Equation (Action-Value Function)

Q(s, a) = E[R(s, a) + γV (s′)]

Explanation: The Bellman equation for the action-value function ex-

presses the value of taking action a in state s and following the policy

afterward.

Implementation:

def bellman_action_value(s, a, rewards, transition_prob, gamma, V):

return rewards[s, a] + gamma * np.sum(transition_prob[s, a] * V)

227

Temporal Difference (TD) Update

V (st)← V (st) + α [Rt+1 + γV (st+1)− V (st)]

Explanation: The TD update improves the value estimate of a state

by using the difference between predicted and actual returns.

Implementation:

def td_update(V, state, reward, next_state, alpha, gamma):

V[state] += alpha * (reward + gamma * V[next_state] - V[state])

228

Monte Carlo Policy Evaluation

V (s)← E[Gt | st = s]

Explanation: Monte Carlo evaluation updates the value of a state by

averaging returns from multiple episodes starting from that state.

Implementation:

def monte_carlo_evaluation(V, state_returns, state_counts):

for state, returns in state_returns.items():

V[state] = np.mean(returns)

229

Policy Improvement

π′(s) = argmax
a

Q(s, a)

Explanation: Policy improvement updates the policy by choosing the

action that maximizes the action-value function.

Implementation:

def policy_improvement(Q):

return np.argmax(Q, axis=1)

230

Q-Learning Update

Q(st, at)← Q(st, at) + α
[
Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]

Explanation: Q-learning is an off-policy algorithm that updates action-

value estimates using the maximum future Q-value.

Implementation:

def q_learning_update(Q, state, action, reward, next_state, alpha, gamma):

Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state])

- Q[state, action])

231

SARSA Update

Q(st, at)← Q(st, at) + α [Rt+1 + γQ(st+1, at+1)−Q(st, at)]

Explanation: SARSA is an on-policy algorithm that updates Q-values

based on the action actually taken under the current policy.

Implementation:

def sarsa_update(Q, state, action, reward,

next_state, next_action, alpha, gamma):

Q[state, action] += alpha * (reward + gamma * Q[next_state, next_action]

- Q[state, action])

232

Value Iteration Update

V (s)← max
a

[
R(s, a) + γ

∑
s′

P (s′ | s, a)V (s′)

]

Explanation: Value iteration iteratively updates state values by find-

ing the optimal action at each step.

Implementation:

def value_iteration(V, rewards, transition_prob, gamma):

for s in range(len(V)):

V[s] = max(np.sum(transition_prob[s, a] * (rewards[s, a]

+ gamma * V)) for a in range(num_actions))

233

Actor–Critic Policy Update

θ ← θ + α∇θ log πθ(at | st)δt, δt = Rt+1 + γV (st+1)− V (st)

Explanation: The actor updates the policy using the advantage, while

the critic updates the value function to estimate the advantage.

Implementation:

def actor_critic_update(actor, critic, state, action, reward, next_state,

alpha, gamma):

delta = reward + gamma * critic[next_state] - critic[state]

actor.update(state, action, alpha * delta)

critic[state] += alpha * delta

234

Deterministic Policy Gradient

∇J(θ) = Es∼ρπ [∇aQ(s, a)∇θπθ(s)]

Explanation: Deterministic policy gradients update the policy directly

in a continuous action space using gradients of the Q-function.

Implementation:

def deterministic_policy_gradient(policy, q_function, state, alpha):

action = policy(state)

grad_q = q_function.gradient(state, action)

grad_pi = policy.gradient(state)

policy.update(state, alpha * np.dot(grad_q, grad_pi))

235

Discount Factor (γ)

Gt =
∞∑
k=0

γkRt+k+1, 0 ≤ γ < 1

Explanation: The discount factor determines the weight given to fu-

ture rewards. A smaller γ prioritizes immediate rewards, while a larger γ

considers longer-term rewards.

Implementation:

def discounted_return(rewards, gamma):

G = 0

for t, r in enumerate(rewards):

G += (gamma**t) * r

return G

236

Expected SARSA

Q(st, at)← Q(st, at) + α [Rt+1 + γEa′ [Q(st+1, a
′)]−Q(st, at)]

Explanation: Expected SARSA updates Q-values using the expected

value of the next action, improving stability over standard SARSA.

Implementation:

def expected_sarsa(Q, state, action, reward, next_state, policy, alpha, gamma):

expected_value = np.sum(policy[next_state] * Q[next_state])

Q[state, action] += alpha * (reward + gamma * expected_value

- Q[state, action])

237

Eligibility Traces Update (TD(λ))

et = γλet−1 +∇θV (st), θ ← θ + αδtet

Explanation: TD(λ) combines TD and Monte Carlo methods using

eligibility traces, balancing bias and variance in value updates.

Implementation:

def td_lambda_update(V, eligibility, state, reward, next_state, alpha,

gamma, lambda_):

delta = reward + gamma * V[next_state] - V[state]

eligibility[state] += 1

V += alpha * delta * eligibility

eligibility *= gamma * lambda_

238

TD Error

δt = Rt+1 + γV (st+1)− V (st)

Explanation: The TD error measures the difference between predicted

and observed rewards, guiding updates in temporal difference learning.

Implementation:

def td_error(V, state, reward, next_state, gamma):

return reward + gamma * V[next_state] - V[state]

239

Stochastic Gradient Descent in RL

θ ← θ − α∇θL(θ)

Explanation: Stochastic gradient descent updates model parameters

by minimizing a loss function, often used in function approximation for RL.

Implementation:

def sgd_update(theta, grad, alpha):

return theta - alpha * grad

240

Double Q-Learning

Q1(st, at)← Q1(st, at)+α
[
Rt+1 + γQ2(st+1, argmax

a
Q1(st+1, a))−Q1(st, at)

]

Explanation: Double Q-learning reduces overestimation bias by alter-

nating updates between two Q-functions.

Implementation:

def double_q_learning_update(Q1, Q2, state, action, reward, next_state,

alpha, gamma):

max_action = np.argmax(Q1[next_state])

target = reward + gamma * Q2[next_state, max_action]

Q1[state, action] += alpha * (target - Q1[state, action])

241

Advantage Actor–Critic (A2C)

δt = Rt+1 + γV (st+1)− V (st), θ ← θ + α∇θ log πθ(at | st)δt

Explanation: A2C uses the advantage function to reduce variance in

policy updates while learning the value function as a baseline.

Implementation:

def a2c_update(actor, critic, state, action, reward, next_state, alpha, gamma):

delta = reward + gamma * critic[next_state] - critic[state]

actor.update(state, action, alpha * delta)

critic[state] += alpha * delta

242

Off-Policy Evaluation (Importance Sampling)

E[Ĝ] = E

[
T−1∏
t=0

π(at | st)
µ(at | st)

Gt

]

Explanation: Importance sampling corrects for discrepancies between

the behavior policy µ and the target policy π when estimating returns.

Implementation:

def importance_sampling(weights, returns):

return np.sum(weights * returns)

243

Policy Gradient Update Rule

θ ← θ + α∇θEπθ
[Gt log πθ(at | st)]

Explanation: The policy gradient algorithm updates parameters in

the direction of performance improvement, directly optimizing the policy.

Implementation:

def policy_gradient_update(policy, rewards, states, actions, alpha):

for state, action, reward in zip(states, actions, rewards):

grad = policy.gradient(state, action)

policy.update(state, action, alpha * reward * grad)

244

Soft Q-Learning Objective

L = Es,a [Q(s, a)− α log π(a | s)]

Explanation: Soft Q-learning optimizes a policy by balancing reward

maximization and entropy regularization.

Implementation:

def soft_q_update(Q, policy, state, action, reward, next_state, alpha, gamma):

entropy = -policy.log_prob(action, state)

target = reward + gamma * (Q[next_state].max() + alpha * entropy)

Q[state, action] += alpha * (target - Q[state, action])

245

Entropy-Regularized RL

π∗ = argmax
π

E[Gt] + αH(π)

Explanation: Entropy regularization encourages exploration by max-

imizing the entropy of the policy.

Implementation:

def entropy_regularized_update(policy, rewards, states,

actions, alpha, entropy_coeff):

for state, action, reward in zip(states, actions, rewards):

entropy = -policy.log_prob(action, state)

grad = policy.gradient(state, action)

policy.update(state, action, alpha *

(reward + entropy_coeff * entropy) * grad)

246

Soft Actor–Critic (SAC)

L = Es,a [Q(s, a)− α log π(a | s)] , Q(s, a) = R + γV (s′)

Explanation: SAC combines entropy regularization with actor–critic

methods to improve stability and exploration in continuous control.

Implementation:

def sac_update(Q, policy, state, action, reward, next_state, alpha, gamma):

entropy = -policy.log_prob(action, state)

target = reward + gamma * (Q[next_state].max() + alpha * entropy)

Q[state, action] += alpha * (target - Q[state, action])

247

Trust Region Policy Optimization (TRPO)

max
θ

Eπθ

[
πθ(a | s)
πθold(a | s)

A(s, a)

]
, subject to DKL(πθ||πθold) ≤ δ

248

