MATHEMATICS FOR MACHINE
LEARNING

A Comprehensive Guide to Building
Mathematical Foundations for Al
and Data Science

PART 1 : Beginner level

Mohamed Aazi

MATHEMATICS FOR
MACHINE LEARNING

A Comprehensive Guide to Building Mathematical

Foundations for Al and Data Science

Part 1 : Beginner level

Par : Mohamed AAZI

SECTION 1 : LINEAR ALGEBRA

Vector Addition

U1 U1 U + U1
U9 V2 U + Vo
u-+v= + =

Explanation: Vector addition combines two vectors component-wise.
It is commonly used in machine learning for gradient updates or geometric

vector operations.

4
Example: If u = and v = , then u+v =
2 4 6

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4])

result = u + v

Scalar Multiplication of a Vector

V1 vy

(%) QU9
av = =

Un vy,

Explanation: Scalar multiplication scales each component of a vector

by the same scalar. It is used in scaling gradients or controlling vector

magnitudes.
6
Example: If « =3 and v = , then av = :
—1 -3
Implementation:

import numpy as np
alpha = 3
v = np.array([2, -1])

result = alpha * v

Dot Product

n
u-v= E W;V; = ULV] + UgVg + -+ + UpUp
i=1

Explanation: The dot product calculates a scalar representing the
magnitude of projection of one vector onto another. It is widely used in

ML for similarity measures or linear operations.

1 3
Example: If u = and v = ,thenu-v=1-34+2-4=11.
2 4

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4])

result = np.dot(u, v)

Cross Product (3D)

UXv=u Uy uUs

V1 V2 U3

Explanation: The cross product generates a vector perpendicular to

two input vectors in 3D space. It is commonly used in physics and computer

graphics.
1 0 0
Example: If u= || andv= [1|,thenuxv = [0].
0 0 1
Implementation:

import numpy as np

u = np.array([1, 0, 0])

v = np.array([0, 1, 0])

result = np.cross(u, v)

Norm of a Vector (Euclidean)

n
g v§:\/v%+vg+---+vg
=1

Explanation: The Euclidean norm measures the magnitude (length)

of a vector. It is useful in optimization and distance computations in ML.
3
Example: If v = , then ||v|| = V3% 4+ 42 = 5.
4

Implementation:

import numpy as np
v = np.array([3, 4])

result = np.linalg.norm(v)

Orthogonality Condition

Explanation: Two vectors are orthogonal if their dot product is zero.
This condition is critical in linear algebra and ML for understanding inde-

pendence and basis construction.

1 —2
Example: If u = and v = ,thenu-v=1--2+2-1=0,
2 1

confirming orthogonality.

Implementation:

import numpy as np

u = np.array([1, 2])
v = np.array([-2, 1])
result = np.dot(u, v)

is_orthogonal = result ==

Matrix Addition

A+B— air a2 n b1 bio _ ay; + b ag + bio

a21 A2 ba1 Do Ao + ba1 age + boo

Explanation: Matrix addition combines two matrices element-wise. It

is used in ML for updating weights and biases or aggregating data.

1 2 5 6 6 8
Example: If A = and B = ,then A+B = .
3 4 7 8 10 12

Implementation:

import numpy as np
A = np.array([[1, 2], [3, 4]11)
B = np.array([[5, 6], [7, 8]1)

result = A + B

Matrix Scalar Multiplication

@11 A12 aa;; Qa2
aA =« =

Q21 A22 Qg1 Q22

Explanation: Scaling a matrix by a scalar is useful in ML for adjusting

learning rates or normalization.

1 2
Example: If « =2 and A = , then aA = .
3 4 6 8

Implementation:

import numpy as np
alpha = 2
A = np.array([[1, 2], [3, 4]11)

result = alpha * A

Matrix-Vector Multiplication

a1 ai2| |T1 1121 + A12%2
A_X = g

a1 Q| | T2 2171 + A22T3

Explanation: Matrix-vector multiplication transforms a vector using
a linear transformation defined by the matrix. It is fundamental in ML for

applying weights to inputs.

1 2 5 17
Example: If A = and x = , then Ax =

3 4 6 39|

Implementation:

import numpy as np

A

np.array([[1, 2], [3, 41]1)

x = np.array([5, 6])

result = np.dot(A, x)

10

Matrix Multiplication

n

C=AB, ¢;= Z airbrj
k=1

Explanation: Matrix multiplication combines two matrices, producing
a matrix that represents the composition of linear transformations. It is

used in ML for layer operations in neural networks.

1 2 5 6 19 22
Example: If A = and B = , then AB =

3 4 7 8 43 50|

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 411

np.array([[5, 6], [7, 811)

B

result = np.dot(A, B)

11

Transpose of a Matrix

11 Q12 11 Aa21

AT = —

Q21 Q22 Q12 Q22

Explanation: The transpose of a matrix flips it over its diagonal,
exchanging rows with columns. It is used in ML for switching between

data representations.
1 2
Example: If A = , then AT =
4

Implementation:

import numpy as np
A = np.array([[1, 2], [3, 411)

result = A.T

12

Determinant of a 2x2 Matrix

a1 Q12
det(A) = = a11Q22 — Q120921

Q21 A22

Explanation: The determinant measures the scaling factor of the
transformation represented by a matrix. It is used to determine matrix

invertibility.

3 8
Example: If A = , then det(A) =3-6—-8-4 = —14.
4 6

Implementation:

import numpy as np
A = np.array([[3, 8], [4, 6]])
result = np.linalg.det(A)

13

Inverse of a 2x2 Matrix

1 Qg2 —Qj2

~ det(A) ’

—a91 Q11

det(A) £ 0

Explanation: The inverse of a 2x2 matrix reverses the linear trans-

formation it represents. It is used in solving systems of linear equations.

3 8
Example: If A = , then det(A) = —14and A~ = }14
6

Implementation:

import numpy as np
A = np.array([[3, 8], [4, 6]])

result = np.linalg.inv(A)

14

Cramer’s Rule

~ det(A)’

det(A) #0

Explanation: Cramer’s Rule solves a system of linear equations Ax =
b by replacing each column of A with b and computing determinants. It

is a theoretical method often used for small systems.

2 1 5
Example: For A = and b = ’

1 3 7
5 1 2 5
Al =) A2 -
73 17
det(Aq) _ det(Ay)

and det(A) =5, so 1 = det(A) ' 2 T dei(A) -

Implementation:

import numpy as np

A = np.array([[2, 1], [1, 311)

b = np.array([5, 7])

det_A = np.linalg.det(A)
x = [np.linalg.det(np.column_stack((b if i == j else A[:, j]
for j in range(A.shape[1])))) / det_A

for i in range(A.shape[1])]

15

Inverse of a Square Matrix

1

Al =
det(A)

adj(A), det(A)#0

Explanation: The inverse of a square matrix generalizes the process
for higher dimensions using the adjugate and determinant. It is crucial in

linear algebra and ML for solving systems of equations.

7
Example: If A = , the inverse is computed using cofactor

2 6

expansion and scaling.

Implementation:

import numpy as np
A = np.array([[4, 7], [2, 6]])

result = np.linalg.inv(A)

16

Determinant of a Triangular Matrix

det(A) = ﬁ (077
=1

Explanation: The determinant of a triangular matrix (upper or lower)
is the product of its diagonal elements. This simplifies determinant calcu-

lations and is useful in decompositions.

210
Example: If A= [0 3 4], then det(A)=2-3-5=30.
0 0 5

Implementation:

import numpy as np
A = np.array([[2, 1, 0], [0, 3, 41, [0, 0, 5]1)

result = np.prod(np.diag(A))

17

Rank-Nullity Theorem

rank(A) + nullity(A) = n

Explanation: The Rank-Nullity Theorem states that the sum of the
rank (dimension of column space) and nullity (dimension of null space) of
a matrix equals the number of columns. It is fundamental in linear algebra

for understanding solutions to systems of linear equations.

Example: If A has 3 columns and its rank is 2, then the nullity is 1
since 2+ 1 = 3.

Implementation:

import numpy as np

from numpy.linalg import matrix_rank

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]1])
rank = matrix_rank(A)

nullity = A.shape[l] - rank

18

Hadamard (Elementwise) Product

a11b11 ai2b12

C=Ao0oB=

a21b91 ag2bag

Explanation: The Hadamard product performs elementwise multipli-
cation between two matrices. It is used in ML for feature-wise scaling or

gating.

1 2 5 6 5 12
Example: If A = and B = , then C = .
3 4 78 21 32

Implementation:

import numpy as np

A

np.array([[1, 2], [3, 411D

B = np.array([[5, 6], [7, 8]1)

result = np.multiply(A, B)

19

Outer Product

U1 UV - ULUp

U201 UV -+ -+ U2Vp
C=u®v=

UmV1 UpU2 - UpUp

Explanation: The outer product generates a matrix by multiplying
every element of one vector by every element of another. It is used in

tensor operations and constructing rank-1 matrices.

3
3 4 5
Example: If u = and v= [4|,thenu®v = .
2 6 8 10
5

Implementation:

import numpy as np

u = np.array([1, 2])

v = np.array([3, 4, 5])

result = np.outer(u, v)

20

Frobenius Norm

[A]lF =

Explanation: The Frobenius norm measures the magnitude of a ma-
trix by summing the squares of all its elements. It is widely used in opti-

mization and matrix analysis.

1 2
Example: If A = , then ||Al|r = V12 122 132 1 42 = +/30.
3 4

Implementation:

import numpy as np
A = np.array([[1, 2], [3, 4]11)

result = np.linalg.norm(A, ’fro’)

21

Matrix Norm Inequality

[Ax]| < [[A]lflx]

Explanation: The matrix norm inequality states that the norm of a
matrix-vector product is bounded by the product of the matrix norm and
the vector norm. It is a key property in numerical linear algebra and ML

for error analysis.

1 2 1
Example: For A = and x = , compute ||Ax| < ||A]|lx]-
3 4 1

Implementation:

import numpy as np

A = np.array([[1, 2], [3, 411)

x = np.array([1, 1])

left = np.linalg.norm(np.dot(A, x))

right = np.linalg.norm(A) * np.linalg.norm(x)

inequality_holds = left <= right

22

Matrix Trace

Explanation: The trace of a matrix is the sum of its diagonal elements.

It is used in ML for loss functions and characterizing matrix properties.

1 2
Example: If A = , then Tr(A) =1+4=05.
3 4

Implementation:

import numpy as np
A = np.array([[1, 2], [3, 4]11)

result = np.trace(A)

23

Trace of a Product

Tr(AB) = Tr(BA)

Explanation: The trace of a product of two matrices is invariant under
cyclic permutations. This property is useful in ML for simplifying gradients

in matrix calculus.

1 2 5 6
Example: For A = and B = , compute Tr(AB) =
3 4 78

Tr(BA).
Implementation:

import numpy as np

A

np.array([[1, 2], [3, 411)
np.array([[5, 6], [7, 811)

B
tracel = np.trace(np.dot(A, B))
trace2 = np.trace(np.dot(B, A))

equality_holds = tracel == trace2

24

Block Matrix Multiplication

C A B| |E F AE +BG AF +BH
C D| |G H CE +DG CF +DH

Explanation: Block matrix multiplication follows the same rules as
scalar matrix multiplication, but each element is a submatrix. It is used in

ML for large-scale computations and decompositions.

Example: Compute the block product for two partitioned 4 x 4 ma-

trices.

Implementation:

import numpy as np

= np.array([[1, 2], [3, 411)

= np.array([[5, 61, [7, 811)

= np.array([[9, 10], [11, 12]1)
= np.array([[13, 14], [15, 16]1)
= np.array([[17, 18], [19, 20]1)
= np.array([[21, 22], [23, 24]11)
= np.array([[25, 26], [27, 28]11)

n & M m U Q W o=

= np.array([[29, 30], [31, 32]11)
top_left = np.dot(A, E) + np.dot(B, G)
top_right = np.dot(A, F) + np.dot(B, H)
bottom_left = np.dot(C, E) + np.dot(D, G)

bottom_right = np.dot(C, F) + np.dot(D, H)

25

ight]])
result = np.block([[top_left, top_right], [bottom_left, bottom_rig

26

Kronecker Product

an B a;2B
C—A®B-=— 11 12
a1 B a»B

Explanation: The Kronecker product produces a block matrix by mul-
tiplying each element of one matrix by the entirety of another. It is used

in ML for tensor operations and signal processing.

1 2 0 5
Example: If A = and B = , compute A ® B.
3 4 6 7

Implementation:

import numpy as np
A = np.array([[1, 2], [3, 4]11)
B = np.array([[0, 5], [6, 7]1])

result = np.kron(A, B)

27

SECTION 2 : PROBABILITY AND
STATISTICS

Conditional Probability

P(AN B)

P(A| B) =~ 5

P(B) >0

Explanation: Conditional probability quantifies the likelihood of event
A occurring given that event B has occurred. It is fundamental in proba-

bilistic reasoning and Bayesian inference.

Example: If P(AN B) =0.2 and P(B) = 0.5, then P(A| B) = 32 =
0.4.

Implementation:

P_A_and B = 0.2
P_.B =0.5

P_A given B = P_A_and B / P_B

28

Law of Total Probability

P(A) = ZP(A | Bi)P(B:)

Explanation: The law of total probability relates the probability of
an event A to the probabilities of A given a partition of events {B;}. It is

used in scenarios with conditional dependencies.

Example: If P(A | By) = 0.3, P(A | By) = 0.7, P(B,) = 0.4, and
P(B,) = 0.6, then P(A) = 0.3-0.4 + 0.7 0.6 = 0.54.

Implementation:
P_A_given_Bl = 0.3
P_A_given_B2 = 0.7
P_Bl1 = 0.4
P_B2 = 0.6

P_A =P_A_given_ Bl * P_B1 + P_A_given B2 * P_B2

29

Bayes’ Theorem

P(A| B) =

Explanation: Bayes’ Theorem allows the reversal of conditional prob-
abilities, often used in updating beliefs with new evidence in ML and statis-

tics.

Example: If P(B | A) = 0.8, P(A) = 0.3, and P(B) = 0.5, then
P(A| B) = %593 = 0.48.

Implementation:
P_B_given_A = 0.8
P_A=0.3
P_B = 0.5
P_A_given B = (P_B_given_A * P_A) / P_B

30

Expectation

Explanation: The expectation (mean) of a random variable is the

weighted average of all possible values, weighted by their probabilities. It

is central in probability and statistics.

Example: If X = {1,2,3} with P(X =1) =0.2, P(X =2) =0.5, and
P(X =3)=03, then E[X] = 1-0.2+2-0.5+3-0.3 = 2.1.

Implementation:

X =1[1, 2, 3]
P_X = [0.2, 0.5, 0.3]

expectation = sum(x * p for x, p in zip(X, P_X))

31

Variance

Explanation: Variance measures the spread of a random variable
around its mean. It is widely used in ML for assessing uncertainty and

model performance.

Example: For X = {1,2,3} with P(X =1) = 0.2, P(X =2) = 0.5,
and P(X = 3) = 0.3, compute E[X] = 2.1 and E[X?] = 4.7, so Var(X) =
47— (2.1)2 = 0.29.

Implementation:

X =111, 2, 3]
P.X = [0.2, 0.5, 0.3]

expectation = sum(x * p for x, p in zip(X, P_X))
expectation_X2 = sum(x**2 * p for x, p in zip(X, P_X))

variance = expectation_X2 - expectation**2

32

Standard Deviation

Explanation: The standard deviation is the square root of the variance
and provides a measure of dispersion in the same units as the random vari-

able. It is widely used in data analysis and ML for variability assessment.

Example: If Var(X) = 0.29, then o(X) = v/0.29 ~ 0.54.

Implementation:

variance = 0.29

std_dev = variancex*x*0.5

33

Covariance

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

Explanation: Covariance measures the joint variability of two random
variables. A positive value indicates that they increase together, while a

negative value indicates an inverse relationship.

Example: If X = {1,2}, Y = {3,4}, P(X,Y) = {0.5,0.5}, and
E[X] = 1.5, E[Y] = 3.5, compute Cov(X,Y) = 0.25.

Implementation:
X =[1, 2]
Y = [3, 4]

P_XY = [0.5, 0.5]

E_X = sum(x * p for x, p in zip(X, P_XY))

E_Y = sum(y * p for y, p in zip(Y, P_XY))

covariance = sum((x - E_.X) * (y - E_.Y) *x p for x, y, p in zip(X, Y, P_XY))

34

Correlation

~ Cov(X,Y)
P = X)e)

Explanation: Correlation normalizes covariance to a scale of [—1,1],
quantifying the strength and direction of a linear relationship between two

variables.

Example: If Cov(X,Y) = 0.25, 0(X) = 0.5, and o(Y) = 1.0, then

p(XY) = 5% = 05.

Implementation:

covariance = 0.25

std_X = 0.5

1.0

std_Y

correlation = covariance / (std_X * std_Y)

35

Probability Mass Function (PMF)

pi, ifrx=ux

0, otherwise

Explanation: The PMF defines the probabilities of discrete outcomes

of a random variable. It is a foundational concept in probability theory.

Example: If X = {1,2,3} with P(X =1) =0.2, P(X =2) =0.5, and
P(X =3) = 0.3, the PMF is defined for these values.

Implementation:

X=1[1, 2, 3]
P.X = [0.2, 0.5, 0.3]
def pmf (x):

return P_X[X.index(x)] if x in X else O

36

Probability Density Function (PDF)

fx(r) >0, /_OO fx(z)dr =1

Explanation: The PDF defines the relative likelihood of a continuous
random variable at a specific value. It is used in probability and statistics

for modeling continuous distributions.

Example: For a standard normal distribution, the PDF is fx(z) =

M)

Le_%.

Ver

Implementation:

import numpy as np
from scipy.stats import norm
x = 0 # example point

pdf_value = norm.pdf (x)

37

Joint Probability

P(ANB) = P(A| B)P(B)

Explanation: Joint probability quantifies the likelihood of two events
occurring together. It is essential in probabilistic modeling and understand-

ing relationships between variables.

Example: If P(A | B) = 0.4 and P(B) = 0.5, then P(AN B) =
0.4-0.5=0.2.

Implementation:

P_A_given B = 0.4
P_.B=0.5
P_A_and_B = P_A_given_B * P_B

38

CDF (Cumulative Distribution Function)

Explanation: The CDF of a random variable gives the probability that
the variable takes a value less than or equal to x. It is used to describe the

distribution function for both discrete and continuous variables.

Example: For a uniform distribution X ~ U(0,1), Fx(0.5) = 0.5.

Implementation:

from scipy.stats import uniform
x =0.5

cdf_value = uniform.cdf(x, loc=0, scale=1)

39

Entropy (discrete)

Explanation: Entropy measures the uncertainty of a discrete random
variable. It is a fundamental concept in information theory and ML, par-

ticularly in decision trees and loss functions.

Example: If P(X) = {0.5,0.5}, then H(X) = —0.510og,(0.5)—0.51og,(0.5) =

Implementation:

import numpy as np
P_X = [0.5, 0.5]

entropy = -sum(p * np.log2(p) for p in P_X if p > 0)

40

Conditional Expectation

EX[Y]=> zP(X =z|Y)

Explanation: Conditional expectation is the expected value of a ran-
dom variable X given that another variable Y is known. It is critical in

Bayesian inference and probabilistic modeling.

Example: If X = {1,2} with P(X =1 |Y) = 0.7 and P(X = 2 |
Y) =03, then E[X | Y] =1-0.7+2-0.3 = 1.3.

Implementation:

X=1[1, 2]
P_X_given.Y = [0.7, 0.3]

conditional_expectation = sum(x * p for x, p in zip(X, P_X_given_Y))

41

Law of Iterated Expectations

E[X] = E[E[X | Y]

Explanation: The law of iterated expectations states that the expec-
tation of X is the weighted average of its conditional expectations over Y.

It is foundational in probability theory and statistics.

Example: Suppose X depends on Y = {1,2}, with E[X | Y = 1] = 3,
EX |Y =2] =5, and P(Y = 1) = 0.6, P(Y = 2) = 0.4. Then E[X] =
3-064+5-04=38.

Implementation:

[3, 5]

E_X_given_Y

P_Y (0.6, 0.4]

E X

sum(e * p for e, p in zip(E_X_given_ Y, P_Y))

42

Marginal Probability

P(A)=) _ P(ANB)

Explanation: Marginal probability calculates the probability of an
event A by summing (or integrating, for continuous cases) over all possible
outcomes of another variable B. It is used in probabilistic modeling to

reduce joint distributions.

Example: If P(AN B;) = 0.3 and P(AN By) = 0.4, then P(A) =
0.34+0.4=0.7.

Implementation:

P_A_and_B = [0.3, 0.4]
P_A = sum(P_A_and_B)

43

Skewness

Skewness(X) =

Explanation: Skewness measures the asymmetry of the probability
distribution of a random variable about its mean. Positive skew indicates

a longer right tail, and negative skew indicates a longer left tail.

Example: For X = {1,2,3} with mean p = 2 and standard deviation

o = 0.816, compute Skewness(X) using the third central moment.

Implementation:

import numpy as np
X =[1, 2, 3]

mu = np.mean(X)
sigma = np.std(X)

skewness = np.mean(((X - mu) / sigma)**3)

44

Kurtosis

Kurtosis(X) =

Explanation: Kurtosis measures the "tailedness” of the probability
distribution. A high kurtosis indicates heavy tails, while a low kurtosis

indicates light tails.

Example: For X = {1,2,3} with mean p = 2 and standard deviation

o = 0.816, compute Kurtosis(X) using the fourth central moment.

Implementation:

import numpy as np
X =[1, 2, 3]

mu = np.mean(X)
sigma = np.std(X)

kurtosis = np.mean(((X - mu) / sigma)**4)

45

Binary Cross-Entropy (special case)

n

BCE(y,3) = — > (v loa(d:) + (1 ~) log(1 — 5.)

=1

Explanation: Binary cross-entropy is a loss function used for binary
classification tasks. It measures the dissimilarity between predicted prob-

abilities () and true labels (y).

Example: Fory = [1,0] and § = [0.8,0.2], compute BCE = —1 (log(0.8) + log(0.8)).

Implementation:

import numpy as np

y = np.array([1, 0])

y_hat = np.array([0.8, 0.2])

bce = -np.mean(y * np.log(y_hat) + (1 - y) * np.log(l - y_hat))

46

Variance (Alternative)

Explanation: An alternative formula for variance uses the difference
between the expected value of the square of X and the square of the ex-

pected value of X. This method is computationally efficient.

Example: For X = {1,2,3}, compute E[X?| = W = 4.67 and
(E[X])? = 2% = 4, so Var(X) = 0.67.

Implementation:

import numpy as np

X = np.array([1, 2, 3])
E_X2 = np.mean(X**2)
E_X = np.mean(X)

variance = E_X2 - E_Xx**2

47

SECTION 3 : CALCULUS

Limit Definition of Derivative

fo) — 1 LE) =)

h—0 h

Explanation: The derivative of a function is defined as the limit of the
difference quotient as h approaches zero. It represents the instantaneous

rate of change of the function.

@thP—a® _ o,

Example: For f(z) = 22, compute f'(z) = lim;_,0 -

Implementation:

def derivative(f, x, h=1le-5):

return (f(x + h) - £(x)) / h

48

Power Rule

Explanation: The power rule simplifies differentiation of monomials.

It is foundational for calculus and widely used in gradient computations in

ML.

Example: For f(x) = 2?, f'(z) = 322

Implementation:

def power_rule(n, x):

return n * x*x*x(n - 1)

49

Product Rule

Explanation: The product rule computes the derivative of the product

of two functions. It is crucial for handling multiplicative relationships in

ML.

Example: For f(z) = (2%)(e%), f'(z) = 2ze® + 2%

Implementation:

def product_rule(u, v, u_prime, v_prime, x):

return u_prime(x) * v(x) + u(x) * v_prime(x)

20

Quotient Rule

Explanation: The quotient rule computes the derivative of the ratio
of two functions. It is essential for operations involving divisions in ML

models.

261

Example: For f(z) = ”cf—j, fl(x) = Z2ege

e2w

Implementation:

def quotient_rule(u, v, u_prime, v_prime, x):

return (u_prime(x) * v(x) - u(x) * v_prime(x)) / (v(x)**2)

51

Chain Rule

Explanation: The chain rule computes the derivative of a compos-

ite function. It is extensively used in backpropagation for training neural

networks.

Example: For f(z) = sin(z?), f'(x) = cos(2?) - 2.

Implementation:

def chain_rule(f_prime, g, g_prime, x):

return f_prime(g(x)) * g_prime(x)

52

Logarithmic Derivative

Explanation: The derivative of the natural logarithm function is the
reciprocal of its argument. It is frequently used in ML for optimization and

logarithmic transformations.

Example: For f(z) =1In(z), f/(2) = 1.

Implementation:

import numpy as np
def log_derivative(x):

return 1 / x

53

Exponential Derivative

Explanation: The exponential function is unique as its derivative is
equal to itself. This property is key in gradient computations and expo-

nential growth models in ML.

Example: For f(z) = e®, f'(2) = €2

Implementation:

import numpy as np
def exp_derivative(x):

return np.exp(x)

54

Integral of a Power Function

xn—i—l
"dr = C -1
/:c x n—i—l+ , nF#

Explanation: The integral of a power function generalizes the an-
tiderivative for monomials. This rule is fundamental in integral calculus

and applied in ML for cost function analysis.
Example: For f(z) = 2%, [2%de =% + C.

Implementation:

def power_integral(n, x):

return xx*(n + 1) / (n + 1)

95

Fundamental Theorem of Calculus

/ f(@)dz = F(b) — F(a), where F'(z) = f(x)

Explanation: The Fundamental Theorem of Calculus links differenti-
ation and integration, stating that integration over an interval is the dif-

ference of the antiderivative evaluated at the endpoints.

3
Example: For f(z) = 2? over [1, 3], ff’ ridr = [é] =2 _1=2
1

Implementation:

def definite_integral(f, a, b):
from scipy.integrate import quad
result, _ = quad(f, a, b)

return result

26

Partial Derivatives

Or h—0 h 0y h—o h

Explanation: Partial derivatives measure the rate of change of a multi-
variable function with respect to one variable while keeping others constant.

They are essential in optimization and gradient-based ML methods.

Example: For f(z,y) = 2?2 + ¢?, % = 2z, g_i = 2.

Implementation:

def partial_derivative(f, var, point, h=1e-5):
args = list(point)
args[var] += h

return (f(*args) - f(xpoint)) / h

o7

Gradient

of

dx1

af

dxa

Explanation: The gradient is a vector containing all partial derivatives
of a scalar-valued function. It points in the direction of the steepest ascent

and is widely used in ML optimization algorithms like gradient descent.

2z

Example: For f(z,y) = 2? + 42, Vf(z,y) =
2y

Implementation:

import numpy as np
def gradient(f, point, h=1le-5):
grad = np.zeros(len(point))
for i in range(len(point)):
args = point.copy()
args[i] += h

grad[i] = (f(xargs) - f(xpoint)) / h

return grad

o8

Second Derivative (Hessian)

2f 9 f
0x? Ox10x2
2 2
H(f) — o°f o f

Oxo0x1 d_xg

Explanation: The Hessian is a square matrix of second-order partial
derivatives. It is used in optimization to assess curvature and convergence

properties of a function.

Example: For f(z,y) = 2* + y?, the Hessian is H(f) =

Implementation:

def hessian(f, point, h=1le-5):

n = len(point)

hess = np.zeros((n, n))

for i in range(n):

for j in range(n):

args = point.copy()
args[i] += h
args[j] += h
f_ij = f(*args)
args[j] -=h
f_i = f(*xargs)
args[i] -= h
args[j] += h

29

f_j = f(*xargs)
f_orig = f(*point)
hess[i, jl = (f_ij - f_i - f_j + f_orig) / (h ** 2)

return hess

60

Directional Derivative

Dyf(x) = Vf(x)-v

Explanation: The directional derivative measures the rate of change
of a function in the direction of a given vector. It is critical in optimization

and ML for evaluating function behavior in a specific direction.

2z
Example: For f(z,y) = 2* + y?, Vf(z,y) = . In the direction
2y

1

v , Dy f(z,y) = 2x.

Implementation:

def directional_derivative(f, grad_f, point, direction):
grad = grad_f (point)

return np.dot(grad, direction)

61

Higher-Order Partial Derivatives

ok f

Oz 0xh? - Ol

Explanation: Higher-order partial derivatives extend partial deriva-
tives to greater orders. Mixed derivatives often satisfy equality (f., = fyz)

under smoothness conditions.

Example: For f(z,y) = 2%y, % = 27.

Implementation:

def higher_order_partial(f, point, var_indices, h=1e-5):
args = list(point)
for var in var_indices:
args[var] += h
f_plus = f(*xargs)
for var in var_indices:
args[var] -= h * len(var_indices)
f_minus = f(*args)

return (f_plus - f_minus) / (h ** len(var_indices))

62

Total Derivative

Explanation: The total derivative accounts for changes in all indepen-
dent variables as functions of an external variable ¢. It is used in dynamical

systems and optimization.

Example: If f(x,y) = 2> +y? = = t, and y = 2, then j—f; =2x-1+

2y - 2t = 2t + 413,

Implementation:

def total_derivative(f, partials, dx_dt, point):

return sum(partials[i] * dx_dt[i] for i in range(len(point)))

63

Implicit Differentiation

oF
&y _ o
oF
dx 5y

Explanation: Implicit differentiation computes the derivative of a de-
pendent variable in an equation where the variable cannot be explicitly

solved. It is used in ML and calculus for handling complex equations.

Example: For F(z,y) =2 +y*>—1=0, Z_gyc -z

Implementation:

def implicit_differentiation(F, x, y, partial_F_x, partial _F_y):

return -partial F_x(x, y) / partial F_y(x, y)

64

Taylor Series Expansion

Explanation: The Taylor series approximates a function near a point

a using its derivatives. It is used in optimization and numerical analysis.

Example: For f(z) = e” near a =0, f(x) =~ 1+x+§+---.

Implementation:

def taylor_series(f, derivatives, a, x, terms=3):
result = 0
for n in range(terms):
result += derivatives([n](a) * (x - a)**n / np.math.factorial(n)

return result

65

Jacobian Matrix

onh ... 2A

ox1 Ozn
J(f) =

Ofm ., Ofm

8;171 al'n

Explanation: The Jacobian matrix contains all first-order partial deriva-
tives of a vector-valued function. It is essential in ML for gradient-based

optimization in multivariable spaces.

2’ +y 221
Example: For f(z,y) = , the Jacobian is

v 4+ 1 2y .

Implementation:

def jacobian(f, point, h=1le-5):

m = len(f)
n = len(point)
J = np.zeros((m, n))

for i in range(m):
for j in range(n):
args = point.copy()
args[j] += h
JIi, jl = (£[i](*args) - f[i] (*point)) / h

return J

66

Arc Length of a Curve

Explanation: The arc length measures the distance along a curve

between two points. It is used in geometry and physics for path analysis.

Example: For y = 2% over [0,1], L = fol V1+ (27)%dx.

Implementation:

from scipy.integrate import quad
def arc_length(f_prime, a, b):
integrand = lambda x: np.sqrt(1 + f_prime(x)**2)

return quad(integrand, a, b)[0]

67

Curvature of a Function

ly"(
(1+ [y ()

&

2)3/2

Explanation: Curvature quantifies how sharply a curve bends at a

given point. It is used in geometry and trajectory analysis in robotics and

ML.

Example: For y = 22, y/(z) = 2x, y'(z) = 2, so k(x) = W.

Implementation:

def curvature(f_prime, f_double_prime, x):
numerator = abs(f_double_prime(x))
denominator = (1 + f_prime(x)**2)*x1.5

return numerator / denominator

68

Integral by Parts

/uv’dx = uv — /u’vdx

Explanation: Integration by parts is a technique derived from the
product rule of differentiation. It is used to simplify integrals involving

products of functions.

Example: For [wze®dz, let uw = x and v' = e®. Then [ze"dz =

xex—fexdx = e — % 4+ (.

Implementation:

from sympy import symbols, integrate, exp

x = symbols(’x’)

u=x

v_prime = exp(x)

v = integrate(v_prime, x)

integral = u * v - integrate(v * u.diff(x), x)

69

Volume of Revolution (Disk Method)

ver/ (@)

Explanation: The disk method computes the volume of a solid of
revolution by slicing it into disks perpendicular to the axis of rotation. It

is common in geometry and physics.

Example: For y = z? revolved around the z-axis over [0,1], V =

7r fol(a;Q)Qd:c = fol atdr = Z.

Implementation:

from scipy.integrate import quad

import numpy as np

def volume_of_revolution(f, a, b):
integrand = lambda x: np.pi * f(x)**2

return quad(integrand, a, b)[0]

70

Surface Integral

//Sf(x,y,z)dSz//Rf(x,yyg(x,y))\/lqL (%)QJr(g—z)ZdA

Explanation: A surface integral extends the idea of a line integral to

a surface, summing a scalar field or vector flux over the surface.

Example: Compute the surface integral of f(z,y,z) = z over z =

2% 492 for 22 + 92 < 1.

Implementation:

from scipy.integrate import dblquad
def surface_integral(f, g, bounds_x, bounds_y):
def integrand(x, y):
gx, gy = glx, y)
return f(x, y, g(x, y)) * np.sqrt(l + gxx*2 + gy**2)

return dblquad(integrand, *bounds_x, *bounds_y)

71

Divergence of a Vector Field

oFy, 0F, OF
L, Of Ofy

ivF=V.F =
div v ox oy 0z

Explanation: The divergence measures the magnitude of a vector
field’s source or sink at a given point. It is used in fluid dynamics and

electromagnetism.

x
Example: For F = |y|,divF=1+1+1=3.

z

Implementation:

from sympy import symbols, diff
X, y, z = symbols(’x y z’)
F=I[x,y, z]

divergence = sum(diff(F[i], var) for i, var in enumerate([x, y, z]))

72

Curl of a Vector Field

i j k

_ —la o o

curl F =V x F = 5 b
F I Iy

Explanation: The curl measures the rotation or circulation of a vector

field at a point. It is critical in fluid mechanics and electromagnetism.

0 —y
Example: For F = | 0 |, curlF = | &
Ty 0

Implementation:

from sympy import symbols, Matrix
X, ¥, z = symbols(’x y z’)
F = Matrix ([0, 0, xx*y])

curl = F.jacobian([x, y, z]).transpose() - F.jacobian([x, y, z])

73

SECTION 4 : OPTIMIZATION

Gradient Descent

o) = 9 — v J(6M)

Explanation: Gradient descent is an optimization algorithm that it-
eratively updates parameters in the direction of the negative gradient to

minimize the cost function J(6).

Example: For J(f) = 6? and n = 0.1, the update is 001 =) —
0.200).

Implementation:

def gradient_descent(gradient, theta, eta, steps):
for _ in range(steps):
theta -= eta * gradient(theta)

return theta

74

Stochastic Gradient Descent (SGD)

plt+1) — g _ nvji(g(t))

Explanation: SGD computes gradients on individual data points, up-
dating parameters more frequently. It is widely used in ML due to its

efficiency with large datasets.

Example: For J;(0) = (6 —y;)?, the update is based on one data point

at each iteration.

Implementation:

def stochastic_gradient_descent(gradient, theta, eta, data, steps):
for _ in range(steps):
i = np.random.randint(len(data))
theta -= eta * gradient(theta, datali])

return theta

75

Momentum-based Gradient Descent

W) — Bu® _ g 7(a®), g — g g e+

Explanation: Momentum adds an exponentially weighted moving av-
erage of past gradients to the current update, improving convergence speed

and stability.

Example: For § = 0.9, n = 0.1, the velocity update smooths oscilla-

tions in gradient descent.

Implementation:

def momentum_gradient_descent(gradient, theta, eta, beta, steps):
v=0
for _ in range(steps):
v = beta * v - eta * gradient(theta)
theta += v

return theta

76

Nesterov Accelerated Gradient (NAG)

W) — gu® _ 7 700 4 gu®), U — g 4 (4D

Explanation: NAG improves upon momentum by calculating gradi-

ents at a lookahead position, resulting in more precise updates.

Example: For = 0.9, NAG anticipates the future direction, reducing

overshooting in oscillatory scenarios.

Implementation:

def nesterov_gradient_descent(gradient, theta, eta, beta, steps):
v=0~0
for _ in range(steps):
lookahead = theta + beta * v

v = beta * v - eta * gradient(lookahead)

theta += v

return theta

77

RMSProp

(t+1) _ [t _ ()12 t+1) _pty _ " (t)
st = 35 4 (1 — B)[VJ(OM)]2, 9D = ¢ S(t+1)+6ww)

Explanation: RMSProp scales the learning rate by a moving average

of squared gradients, improving convergence for non-convex problems.

Example: For g = 0.9, RMSProp adapts the step size for each param-

eter, stabilizing updates.

Implementation:

def rmsprop(gradient, theta, eta, beta, epsilon, steps):
s =0
for _ in range(steps):
grad = gradient(theta)
s = beta * s + (1 - beta) * gradx*2
theta -= eta / (np.sqrt(s) + epsilon) * grad

return theta

78

Adam Optimization

Explanation: Adam combines momentum and RMSProp, adapting
step sizes and smoothing updates. It is one of the most popular optimiza-

tion algorithms in ML.

Example: For 5; = 0.9, 55 = 0.999, Adam balances momentum and

per-parameter scaling.

Implementation:

def adam(gradient, theta, eta, betal, beta2, epsilon, steps):
m, s =0, 0
for t in range(l, steps + 1):

grad = gradient(theta)

m = betal * m + (1 - betal) * grad

s = beta2 * s + (1 - beta2) * grad**2

m_hat

m / (1 - betal*x*t)

s_hat = s / (1 - beta2*xt)
theta -= eta / (np.sqrt(s_hat) + epsilon) * m_hat

return theta

79

Regularized Optimization Objective

Jreg(0) = J(0) + AR(0)

Explanation: Regularization penalizes model complexity to prevent

overfitting. Common regularizers include L1 (lasso) and L2 (ridge) norms.

Example: For R(6) = [|0]13, Jie(0) = J(0) + A||0]I3.

Implementation:

def regularized_objective(loss, theta, reg, lam):

return loss(theta) + lam * reg(theta)

80

Learning Rate Decay

o
1+t

=

Explanation: Learning rate decay gradually reduces the learning rate

to improve convergence stability as training progresses.

Example: For ny = 0.1, v = 0.01, at step ¢t = 10, n, = 0.1/(1 4 0.01 -
10) = 0.09009.

Implementation:

def learning rate_decay(etal, gamma, t):

return eta0 / (1 + gamma * t)

81

Gradient Clipping

g = clip(g, —7,7)

Explanation: Gradient clipping limits the gradient magnitude to pre-

vent exploding gradients in deep neural networks.

Example: For 7 = 1.0, clip gradients to the range [—1, 1].

Implementation:

def gradient_clipping(grad, tau):

return np.clip(grad, -tau, tau)

82

Minibatch Gradient Descent

pl+1) — gt _ anBt(Q(t))

Explanation: Minibatch gradient descent computes updates using
small random subsets of data, balancing SGD’s noise and batch gradient

descent’s stability.

Example: Use minibatch size B = 32 to compute updates on smaller

subsets of data.

Implementation:

def minibatch_gradient_descent(gradient, theta, eta, data, batch_size, steps):
for _ in range(steps):
batch = np.random.choice(data, batch_size, replace=False)
theta -= eta * gradient(theta, batch)

return theta

83

Coordinate Descent

Explanation: Coordinate descent optimizes a single parameter at a
time, cycling through all parameters until convergence. It is effective for

high-dimensional problems.

Example: Minimize J(61,60,) = (6; — 1)® + (62 — 2)? by alternately
updating 6, and 6s.

Implementation:

def coordinate_descent(gradient, theta, eta, steps):
for _ in range(steps):
for j in range(len(theta)):
thetal[j] -= eta * gradient(theta, j)

return theta

84

Elastic Net Regularization

Jreg(0) = J(0) + Mll0]l1 + X205

Explanation: Elastic Net combines L1 and L2 regularization to handle

sparsity and multicollinearity. It is commonly used in regression tasks.

Example: For A\; = 0.1, A\, = 0.2, and J(0) = |0 — y||3, compute the

regularized objective.

Implementation:

def elastic_net_objective(loss, theta, laml, lam2):

return loss(theta) + laml * np.sum(np.abs(theta)) + lam2 * np.sum(theta**2)

85

Adagrad Optimization

Explanation: Adagrad adapts the learning rate for each parameter

based on the history of gradients, improving performance on sparse data.

Example: For n = 0.1, adaptively scale updates for different features.

Implementation:

def adagrad(gradient, theta, eta, epsilon, steps):
G=0
for _ in range(steps):
grad = gradient(theta)
G += grad*x*2
theta —-= eta / (np.sqrt(G) + epsilon) * grad

return theta

86

AdamW Optimization

g+ — gy _ o 3 p®)

Explanation: AdamW modifies Adam by decoupling weight decay
from the gradient updates, improving regularization and generalization in

ML models.

Example: For A = 0.01, regularize weights alongside adaptive learning

rates.

Implementation:

def adamw(gradient, theta, eta, betal, beta2, lam, epsilon, steps):
m, s =20, 0
for t in range(1l, steps + 1):

grad = gradient(theta)

m = betal * m + (1 - betal) * grad

s = beta2 * s + (1 - beta2) * grad**2

m_hat = m / (1 - betalxxt)

s_hat = s / (1 - beta2*x*t)
theta -= eta / (np.sqrt(s_hat) + epsilon) * m_hat + lam * theta

return theta

87

Momentum “Heavy Ball” Method

g+l — &) 4 5(9@) — g(tfl)) _ TIVJ(H(t))

Explanation: This variant of momentum includes an inertial term to

improve convergence speed for strongly convex problems.

Example: For 5 = 0.9, the "heavy ball” accelerates gradient descent.

Implementation:

def heavy_ball(gradient, theta, eta, beta, steps):
prev_theta = theta.copy()
v=0~0
for _ in range(steps):
grad = gradient(theta)
v = beta * (theta - prev_theta) - eta * grad
prev_theta = theta.copy()
theta += v

return theta

88

Projection / Projected Gradient Descent

Explanation: Projected gradient descent ensures that updates remain

within a feasible set C, often used for constrained optimization.

Example: For C = ||f]|2 < 1, project 6 onto the unit ball after each
step.

Implementation:

def projected_gradient_descent(gradient, theta, eta, projection, steps):
for _ in range(steps):
theta -= eta * gradient(theta)
theta = projection(theta)

return theta

89

Newton’s Method

pl+1) — g _ [H(@(t))]*1VJ<9(t))

Explanation: Newton’s method uses second-order information via the

Hessian to improve convergence, especially for quadratic cost functions.

Example: For J() = 0?, the update uses H = 2.

Implementation:

def newtons_method(gradient, hessian, theta, steps):

for _ in range(steps):

grad = gradient(theta)

hess = hessian(theta)
theta -= np.linalg.inv(hess).dot(grad)

return theta

90

Proximal Gradient Method

01D = prox, z (0 — nvV.J(01))

Explanation: The proximal gradient method generalizes gradient de-

scent to handle nonsmooth regularization terms such as L1 norm.

Example: For R(6) = ||0|;, compute soft thresholding for each pa-

rameter.

Implementation:

def proximal_gradient(gradient, theta, eta, prox, steps):
for _ in range(steps):
theta -= eta * gradient(theta)
theta = prox(theta)

return theta

91

Proximal Gradient with L1 (ISTA)

9D = soft (0 — nV.J(01), M)

Explanation: Iterative Shrinkage-Thresholding Algorithm (ISTA) ap-

plies soft thresholding to update parameters for sparse optimization.

Example: For J(0) = ||0 — y||5 + A||f]1, apply shrinkage to each 6;.

Implementation:

def ista(gradient, theta, eta, lam, steps):
def soft_threshold(x, lam):
return np.sign(x) * max(0, abs(x) - lam)
for _ in range(steps):
theta -= eta * gradient(theta)
theta = np.vectorize(soft_threshold) (theta, lam * eta)

return theta

92

Penalty Method

Jpenalty(9> = J<9) + %h<6)2

Explanation: The penalty method solves constrained optimization

problems by penalizing constraint violations in the objective function.

Example: For h(f) = ||0|3 — 1, penalize deviations from the unit ball

constraint.

Implementation:

def penalty_method(loss, theta, penalty, mu):

return loss(theta) + penalty(theta)**2 / mu

93

Augmented Lagrangian Method

L0\ 1) = J(0) + \h(6) + gh(e)Z

Explanation: The augmented Lagrangian method combines Lagrangian
and penalty approaches to solve constrained optimization problems. It al-

ternates between updating parameters and Lagrange multipliers.

Example: For J(0) = ||0]|3 and k() = ||0]]; — 1, compute updates for
0, A\, and p.

Implementation:

def augmented_lagrangian(loss, h, theta, lam, mu, steps):
for _ in range(steps):
lagrangian = loss(theta) + lam * h(theta) + (mu / 2) * h(theta)**2
theta -= np.gradient(lagrangian)
lam += mu * h(theta)

return theta

94

Dual Ascent Method

AL — @) nh(e(t))

Explanation: The dual ascent method optimizes the dual problem of

constrained optimization by updating the Lagrange multipliers iteratively.

Example: For h(f) = ||f||; — 1, update X\ based on the constraint

violation.

Implementation:

def dual_ascent(loss, h, theta, lam, eta, steps):
for _ in range(steps):
theta -= eta * np.gradient(loss(theta) + lam * h(theta))
lam += eta * h(theta)

return theta, lam

95

Trust Region Method

1
94+ = arg mAin{J(H) +VJO)TA + éATHA‘ Al < Amax}

Explanation: The trust region method restricts the step size to a
region where the quadratic approximation of the cost function is wvalid,

ensuring stability.

Example: For J(0) = ||§—y||3, compute steps A constrained by ||Al] <
Amax'

Implementation:

def trust_region(loss, gradient, hessian, theta, delta_max, steps):
for _ in range(steps):

grad = gradient(theta)

hess = hessian(theta)

delta = np.linalg.solve(hess, -grad)

if np.linalg.norm(delta) > delta_max:

delta *= delta_max / np.linalg.norm(delta)
theta += delta

return theta

96

Barrier Method

Jbarrier(0> = J<9) - /%Zln(—hz(e))

Explanation: The barrier method solves constrained optimization by
penalizing constraint violations with a logarithmic barrier, keeping updates

within the feasible region.

Example: For h(0) = ||0]|1 — 1, use —In(1 —|0||1) as the barrier term.

Implementation:

def barrier_method(loss, h, theta, mu, steps):
for _ in range(steps):
barrier = -np.sum(np.log(-h(theta)))
theta -= np.gradient(loss(theta) + (1 / mu) * barrier)
mu *= 0.9

return theta

97

Simulated Annealing

piam) - o -25)

Explanation: Simulated annealing is a probabilistic optimization al-
gorithm inspired by annealing in metallurgy. It explores the solution space

by accepting worse solutions probabilistically to escape local minima.

Example: Minimize J(f) = 62 with an initial temperature 7" = 1,

gradually cooling down.

Implementation:

import numpy as np
def simulated_annealing(loss, theta, T, cooling_rate, steps):
for _ in range(steps):
new_theta = theta + np.random.uniform(-1, 1, size=theta.shape)
delta_E = loss(new_theta) - loss(theta)
if delta_E < O or np.exp(-delta_E / T) > np.random.rand():
theta = new_theta
T *= cooling_rate

return theta

98

SECTION 5 : REGRESSION

Linear Regression Hypothesis

Explanation: The hypothesis for linear regression assumes that the
target variable y is a linear combination of features X, coefficients 3, and

an error term e.

Example: For y = 22, 4+ 325 + €, predict y as a linear function of x;

and .

Implementation:

import numpy as np
X = np.array([[1, 2], [3, 4]11)
beta = np.array([2, 3])

y_pred = X @ beta

99

Ordinary Least Squares (OLS)

B =(X"X)"X"y

Explanation: OLS finds the coefficient vector 3 that minimizes the

sum of squared residuals between predicted and actual values.

1 2 5
Example: For X = and y = , compute (3.
3 4 11

Implementation:

beta = np.linalg.inv(X.T @ X) @ X.T @ y

100

Mean Squared Error (MSE)

n

! :
MSE = — > (y; — i)’

n <
=1

Explanation: MSE quantifies the average squared difference between

actual and predicted values. It is a standard loss function in regression.
Example: For y = [1,2,3] and gy = [1.1, 1.9, 3.2], compute the MSE.

Implementation:

mse = np.mean((y - y_pred)**2)

101

Gradient of the MSE Loss

0 __2xry
VIS = = X (v - XB)

Explanation: The gradient of MSE with respect to B is used in

gradient-based optimization algorithms like gradient descent.

1 2
Example: Compute the gradient for X = .y = [5,11], and
3 4

B =11,1].

Implementation:

grad = -2 / len(y) * X.T @ (y - X @ beta)

102

Coefficient of Determination (R?)

Explanation: R2? measures the proportion of variance in the target

variable explained by the model. A value close to 1 indicates a good fit.

Example: For y = [1,2,3] and § = [1.1, 1.9, 3.2], compute R

Implementation:

r2 = 1 - np.sum((y - y_pred)**2) / np.sum((y - np.mean(y))**2)

103

Adjusted R?

Rzzl_(l_Rz)(n_l)

n—p—1

Explanation: Adjusted R? accounts for the number of predictors p in

the model, penalizing overfitting.

Example: For R? = 0.9, n = 100, and p = 5, compute R2.

Implementation:

adjusted_r2=1- (1 -r2) *x (n-1) / (n-p-1)

104

Mean Absolute Error (MAE)

1 n
MAE = — = 0
”,§1|y Ui

Explanation: MAE measures the average magnitude of prediction er-

rors. It is less sensitive to outliers compared to MSE.
Example: For y = [1,2,3] and § = [1.1, 1.9, 3.2], compute the MAE.

Implementation:

mae = np.mean(np.abs(y - y_pred))

105

Weighted Least Squares (WLS)

B = (XTWX) ' XT"Wy

Explanation: WLS minimizes the sum of weighted residuals, allowing

for heteroscedasticity in the data.

Example: For W = diag([1, 2]), compute 3.

Implementation:

W = np.diag([1, 2])
beta = np.linalg.inv(X.T @ W @ X) @ X.T QW Q y

106

Polynomial Regression Hypothesis

§=0B+ Bz + Byr® + -+ B,a"

Explanation: Polynomial regression models the relationship between
x and y as a polynomial. It generalizes linear regression to non-linear

patterns.

Example: Fit y = 2z + 2%

Implementation:

from numpy.polynomial.polynomial import Polynomial
poly = Polynomial.fit(X, y, deg=2)
y_pred = poly(X)

107

Non-Linear Regression

§=[fX.B)+e

Explanation: Non-linear regression models relationships where the

target variable is a non-linear function of the parameters.

Example: Fit y = ae®® using optimization.

Implementation:

from scipy.optimize import curve_fit
def model(X, a, b):
return a * np.exp(b * X)

params, _ = curve_fit(model, X, y)

108

Maximum Likelihood Estimation for Regression

B = argmax | [p(y: | X, 8)

=1

Explanation: MLE estimates the parameters that maximize the like-

lihood of observing the data under a probabilistic model.
Example: Estimate 3 assuming Gaussian noise.

Implementation:

from scipy.optimize import minimize

def neg_log_likelihood(beta, X, y):
residuals = y - X @ beta
return np.sum(residuals**2)

beta = minimize(neg_log_likelihood, np.zeros(X.shape[1]), args=(X, y)).x

109

Empirical Risk Minimization

R 1 <&
arg min — Z; (ys, (X3, 6))
Explanation: ERM minimizes the average loss over the training data
to estimate the model parameters.
Example: Minimize MSE loss for linear regression.

Implementation:

def empirical_risk(theta, X, y, loss):

return np.mean([loss(y[i], np.dot(X[i], theta)) for i in range(len(y))])

110

Logistic Regression Hypothesis

Explanation: Logistic regression predicts probabilities for binary clas-

sification using the sigmoid function applied to a linear combination of

inputs.
1 2 1
Example: For X = and 3 = , compute 7.
3 4 -1
Implementation:

def sigmoid(z):
return 1 / (1 + np.exp(-z))

y_pred = sigmoid(X @ beta)

111

Binary Cross-Entropy Loss

n

L= 3" llog(ii) + (1 — i) los(1 — o)

i=1

Explanation: Binary cross-entropy measures the dissimilarity between

predicted probabilities and true labels in binary classification.
Example: For y = [1,0] and g = [0.9,0.1], compute the loss.

Implementation:

loss = -np.mean(y * np.log(y_pred) + (1 - y) * np.log(l - y_pred))

112

Cross-Entropy Loss (Multi-Class)

n k

L= —% Z Z yij log(9i;)

i=1 j=1

Explanation: Cross-entropy loss generalizes to multi-class classifica-

tion, comparing one-hot-encoded true labels with predicted probabilities.

Example: For y = [1,0,0] and § = [0.8,0.1,0.1], compute the loss.

Implementation:

loss = -np.mean(np.sum(y * np.log(y_pred), axis=1))

113

Hinge Loss for SVM

1 n
LI— 0 1— Z'Ai
@ 2o max(0,1 =)

Explanation: Hinge loss penalizes predictions that are not at least

1 margin away from the correct classification in support vector machines

(SVMs).
Example: For y = [1,—1] and § = [0.8, —0.5], compute the loss.

Implementation:

loss = np.mean(np.maximum(0, 1 - y * y_pred))

114

Lasso Regression Objective

1
L= %Hy — X815 + MBI

Explanation: Lasso regression adds an L1 regularization term to the

least squares loss, promoting sparsity in the coefficients.
Example: For A = 0.1, add ||8||; as a penalty.

Implementation:

loss = 0.5 * np.mean((y - X @ beta)**2) + lam * np.sum(np.abs(beta))

115

Ridge Regression Objective

1
L= -lly ~ XBI3 + MBI

Explanation: Ridge regression adds an L2 regularization term to re-

duce overfitting by shrinking coefficients.
Example: For A = 0.1, compute the loss with L2 regularization.

Implementation:

loss = 0.5 * np.mean((y - X @ beta)**2) + lam * np.sum(betax*2)

116

Negative Binomial Regression

Explanation: Negative binomial regression models count data with

overdispersion using a generalized linear model.

Example: Fit a model for overdispersed count data.

Implementation:

from statsmodels.api import GLM, families
model = GLM(y, X, family=families.NegativeBinomial())

results = model.fit()

117

Poisson Regression Model

Explanation: Poisson regression models count data using a log link

function, assuming the target variable follows a Poisson distribution.

Example: Predict event counts given feature data.

Implementation:

from statsmodels.api import GLM, families
model = GLM(y, X, family=families.Poisson())

results = model.fit()

118

Gamma Regression Objective

Explanation: Gamma regression models positive continuous data with

a Gamma distribution, often for skewed datasets.

Example: Predict insurance claims amounts.

Implementation:

from statsmodels.api import GLM, families
model = GLM(y, X, family=families.Gamma())

results = model.fit()

119

Probit Regression Model

Explanation: Probit regression models binary classification using the

cumulative normal distribution function ®.

Example: Predict binary outcomes using a probit link.

Implementation:

from statsmodels.api import GLM, families
model = GLM(y, X, family=families.Binomial(link=families.links.probit()))

results = model.fit()

120

Multinomial Logistic Regression

= =K .
Zj:l X

Explanation: Multinomial logistic regression generalizes logistic re-

gression for multi-class classification tasks.
Example: Classify samples into one of K = 3 classes.

Implementation:

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(multi_class=’multinomial’)

model.fit (X, y)

121

Quantile Regression Loss

n

L= ply—3). prle) = max(re, (1 - 7)e)

i=1

Explanation: Quantile regression minimizes the weighted sum of resid-

uals, modeling conditional quantiles of the target variable.
Example: Estimate the 90th percentile of target values.

Implementation:

from statsmodels.api import QuantReg
model = QuantReg(y, X)

results = model.fit(q=0.9)

122

Huber Loss

n l(._“.2 i —
vi — Ui)%, if |y, —9s) <9
=34 ‘

i=1 | &ly; — §;] — 30%, otherwise

Explanation: Huber loss combines MSE and MAE, being quadratic

for small errors and linear for large errors, robust to outliers.
Example: Fit a regression model robust to outliers with 6 = 1.

Implementation:

def huber_loss(y, y_pred, delta):
diff = np.abs(y - y_pred)

return np.where(diff <= delta, 0.5 * diff**2, delta * diff - 0.5 * delta**2

123

SECTION 6 : NEURAL
NETWORKS

Perceptron Update Rule

w1 = w4y — §)x

Explanation: The perceptron update rule adjusts weights based on
prediction errors. It is used for binary classification in linearly separable

data.
Example: For x =[1,2], y =1, y =0, and n = 0.1, update w.

Implementation:

w += eta * (y - y_pred) * x

124

Forward Propagation (Single Layer)

Explanation: Forward propagation computes predictions by applying

a weight matrix and activation function to input features.

Example: For X = [1,2], w = [0.5,0.5], and b = 0, compute 3.

125

Sigmoid Activation

Explanation: The sigmoid activation maps inputs to [0, 1], commonly

used for binary classification.

Example: For z = 0.5, compute ¢(0.5).

Implementation:

def sigmoid(z):

return 1 / (1 + np.exp(-z))

126

Tanh Activation

e —e

tanh(z) = +—
ez +e %

Explanation: Tanh activation maps inputs to [—1, 1] and is useful for

symmetric data.

Example: For z = 0.5, compute tanh(0.5).

Implementation:

def tanh(z):

return np.tanh(z)

127

ReLU Activation

ReLU(z) = max(0, z)

Explanation: ReLU introduces non-linearity by zeroing negative val-

ues, often used in deep networks.

Example: For z = —1, compute ReLU(—1).

Implementation:

def relu(z):

return np.maximum(0, =z)

128

Heaviside Step Activation

0, z<0

Explanation: The Heaviside step function outputs binary values for

classification tasks.

Example: For z = —1, compute H(—1).

Implementation:

def heaviside(z):

return np.where(z >= 0, 1, 0)

129

Leaky ReLU Activation

z, z>0
Leaky ReLU(z) =

az, z2<0

Explanation: Leaky ReLLU allows small gradients for negative inputs,

mitigating dead neurons.

Example: For z = —1 and a = 0.01, compute Leaky ReL.U(—1).

Implementation:

def leaky_relu(z, alpha=0.01):

return np.where(z >= 0, z, alpha * z)

130

ELU Activation (Exponential Linear Unit)

ELU(z) =
ale* —1), z2<0

Explanation: ELU smooths ReLLU by providing exponential outputs

for negative inputs, improving gradient flow.

Example: For z = —1 and o = 1, compute ELU(—1).

Implementation:

def elu(z, alpha=1):

return np.where(z >= 0, z, alpha * (np.exp(z) - 1))

131

Softmax Function

Softmax(z); =

Explanation: Softmax normalizes a vector into a probability distribu-

tion over n classes.

Example: For z = [1,2, 3], compute Softmax(z).

Implementation:

def softmax(z):
exp_z = np.exp(z - np.max(z)) # Numerical stability

return exp_z / exp_z.sum(axis=0)

132

Loss Function for Multi-Class (Cross-Entropy)

n k

L= —% Z Z yij log(9i;)

i=1 j=1

Explanation: Cross-entropy loss measures the dissimilarity between

predicted probabilities and true labels in multi-class classification.
Example: For y = [1,0,0] and § = [0.8,0.1,0.1], compute the loss.

Implementation:

loss = -np.mean(np.sum(y * np.log(y_pred), axis=1))

133

Gradient Descent for Neural Networks

oL

gt — g _ ,9F
o0

Explanation: Gradient descent updates the network’s weights by min-

imizing the loss function using gradients.

~

Example: Update 6 for £ = (y — §)%

134

Backpropagation (Gradient for Weights)

Explanation: Backpropagation computes the gradient of the loss func-

tion with respect to the weights in a neural network using the chain rule.

Example: Compute gradients for a single-layer neural network.

Implementation:

delta = (y_pred - y) * sigmoid_prime(z)

grad_w = np.outer(delta, a)

135

Mean Squared Error Loss

Explanation: Mean squared error measures the average squared differ-

ence between predictions and actual values, commonly used in regression.

Example: For y = [1,2] and g = [1.1, 1.8], compute the loss.

Implementation:

loss = np.mean((y - y_pred)**2)

136

Binary Cross-Entropy Loss

n

L= 3" llog(ii) + (1 — i) los(1 — o)

i=1

Explanation: Binary cross-entropy measures the difference between

predicted probabilities and true binary labels.
Example: For y = [1,0] and g = [0.9,0.1], compute the loss.

Implementation:

loss = -np.mean(y * np.log(y_pred) + (1 - y) * np.log(l - y_pred))

137

Batch Normalization

T —

—’:i-_|_
Ve VTS

=>
Il

Explanation: Batch normalization normalizes inputs to a layer, re-

ducing internal covariate shift and accelerating training.

Example: Normalize z = [1,2,3] with y =1, = 0.

Implementation:

mean = np.mean(x)
var = np.var(x)
x_norm = (x - mean) / np.sqrt(var + epsilon)

y = gamma * x_norm + beta

138

Dropout Regularization

0, with probability p

=, otherwise
-p

Explanation: Dropout randomly sets a fraction p of activations to

zero during training to prevent overfitting.

Example: Apply dropout to activations a = [1,2, 3] with p = 0.5.

Implementation:

mask = np.random.rand(len(a)) > p

a_dropout = a * mask / (1 - p)

139

Gradient of Sigmoid

Explanation: The derivative of the sigmoid function is used in back-

propagation to compute gradients efficiently.

Example: For z = 0.5, compute ¢’(0.5).

Implementation:

def sigmoid_prime(z):
s = sigmoid(z)

return s * (1 - s)

140

RMSProp for Weight Updates

st — gg® 4 (1- B)g% wttD — 4y ® n

v/ gt+1) + €g

Explanation: RMSProp adapts the learning rate for each weight based

on the moving average of squared gradients.

Implementation:

s = beta * s + (1 - beta) * grad**2

w -= eta / (np.sqrt(s) + epsilon) * grad

141

Xavier (Glorot) Initialization

6 6
~U(—
v (\/nin + nout, \/nin + nout)

Explanation: Xavier initialization sets weights to maintain variance

across layers, improving convergence in deep networks.

Implementation:

limit = np.sqrt(6 / (n_in + n_out))

w = np.random.uniform(-limit, limit, size=(n_in, n_out))

142

L2 Regularization (Weight Decay)

A
L=Ly+ 5”“’“3

Explanation: L2 regularization adds a penalty proportional to the

square of weights to prevent overfitting.

143

Heaviside vs. Hard Sigmoid

Hard Sigmoid(z) = max(0, min(1,0.2z + 0.5))

Explanation: Heaviside is a binary activation function, while Hard

Sigmoid approximates sigmoid for efficiency.

Implementation:

def hard_sigmoid(z):
return np.clip(0.2 x z + 0.5, 0, 1)

144

Swish Activation

Swish(z) = z - 0(2)

Explanation: Swish is a smooth, non-monotonic activation function

that often outperforms ReLLU in deep networks.

Implementation:

def swish(z):

return z * sigmoid(z)

145

Maxout Activation

Maxout(z) = m[ax} 2
i€[Lk

Explanation: Maxout selects the maximum value from £ linear func-

tions, enabling learnable piecewise linear activations.

Implementation:

def maxout(z):

return np.max(z, axis=0)

146

Sparse Categorical Cross-Entropy

1 n
L - — 1 AZ‘ B
" ;:1 0g(Tiy:)

Explanation: Sparse categorical cross-entropy simplifies the loss cal-

culation by directly indexing the true class probabilities.

Implementation:

loss = -np.mean(np.log(y_pred[range(len(y)), y]))

147

Cosine Similarity / Cosine Loss

Cosine Similarity = Hunﬁ
ul|||v

Explanation: Cosine similarity measures the angle between vectors,

commonly used in text and embedding similarity.

Implementation:

cos_sim = np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v))

148

SECTION 7 : CLUSTERING

Distance Metric (Euclidean)

Explanation: Euclidean distance measures the straight-line distance
between two points in n-dimensional space. It is widely used in clustering

and nearest-neighbor methods.

Example: Foru = [1,2] and v = [3,4], d(u,v) = /(3 —1)2+ (4 — 2)%2 =
V8.

Implementation:

def euclidean_distance(u, v):

return np.sqrt(np.sum((u - v)*%*2))

149

Manhattan Distance

d(“av) = Z ‘Uz — Ui
i=1

Explanation: Manhattan distance measures the sum of absolute differ-

ences between corresponding components, resembling city block distances.

Example: For u = [1,2] and v = [3,4], d(u,v) = [3—1|+ |4 —2| = 4.

Implementation:

def manhattan_distance(u, v):

return np.sum(np.abs(u - v))

150

Cosine Similarity

Cosine Similarity = Hunﬁ
ul|||v

Explanation: Cosine similarity measures the cosine of the angle be-

tween two vectors, capturing orientation rather than magnitude.

Example: For u = [1,0] and v = [0, 1], similarity is 0.

Implementation:

def cosine_similarity(u, v):

return np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v))

151

Jaccard Similarity (Binary Data)

lunv]

Jaccard Similarity = w V]
uuv

Explanation: Jaccard similarity compares the intersection and union

of binary data, commonly used in text and set-based similarity.

Example: For u =[1,1,0] and v = [1,0, 1], similarity is %

Implementation:

def jaccard_similarity(u, v):

return np.sum(np.logical_and(u, v)) / np.sum(np.logical_or(u, v))

152

k-Means Objective

k
T=3"3 I — P

=1 X;j eC;

Explanation: The k-means objective minimizes the sum of squared

distances between data points and their assigned cluster centroids.

Example: For points [1,2], [3,4] in cluster C; with centroid [2,3],

compute J.

Implementation:

def k_means_objective(X, centroids, labels):

return np.sum(np.linalg.norm(X - centroids[labels], axis=1)*%2)

153

Centroid Update Rule (k-Means)

1
M = |Cz| Z Xj

X;j eC;

Explanation: The centroid of each cluster is updated as the mean of

points assigned to it.
Example: For cluster C, = {[1, 2], [3,4]}, compute p, = [2,3].

Implementation:

def update_centroids(X, labels, k):

return np.array([X[labels == i] .mean(axis=0) for i in range(k)])

154

Elbow Method for Optimal k

T(R) =" lxs— pal®

=1 XjECi

Explanation: The elbow method finds the optimal number of clusters

k by identifying the "elbow” in the plot of J(k) versus k.

Implementation:

def elbow_method (X, max_k):
distortions = []
for k in range(1l, max_k + 1):
kmeans = KMeans(n_clusters=k).fit(X)
distortions.append(kmeans.inertia_)

return distortions

155

k-Medoids Objective

Explanation: k-Medoids minimizes the sum of distances between data

points and their cluster medoids, robust to outliers.

Example: Replace centroids with medoids for robust clustering.

Implementation:

def k_medoids_objective(X, medoids, labels):
return np.sum([np.sum(np.linalg.norm(X[labels == 1i]

- medoids[i], axis=1)) for i in range(len(medoids))])

156

Fuzzy c-Means Objective

C n

=22 uifllx; —cil?

i=1 j=1

Explanation: Fuzzy c-means assigns membership values u;; to each

data point for each cluster, allowing soft clustering.

Implementation:

def fuzzy_c_means_objective(X, centroids, memberships, m):
return np.sum(memberships**m * np.linalg.norm(X[:, None]

- centroids, axis=2)*x*2)

157

Silhouette Score

b—a
S =———, a = intra-cluster distance, b = nearest-cluster distance
max(a, b)

Explanation: Silhouette score evaluates the quality of clustering by

comparing intra-cluster and nearest-cluster distances.

Implementation:

from sklearn.metrics import silhouette_score

score = silhouette_score(X, labels)

158

Hierarchical Clustering Dendrogram

d(Cy,Cy) = min ||z — vyl

xeC1,yeCs

Explanation: A dendrogram visually represents the hierarchical clus-

tering process, showing cluster merges.

Implementation:

from scipy.cluster.hierarchy import dendrogram, linkage
Z = linkage(X, method=’ward’)

dendrogram(Z)

159

Ward’s Linkage

[ei[e 5
d(Cy,Cy) = ————— —
(1, 2) ’C1|+|CQ‘||I'I'1 l’l'QH

Explanation: Ward’s linkage minimizes the variance increase when

merging clusters, resulting in compact clusters.

Implementation:

from scipy.cluster.hierarchy import linkage

Z = linkage(X, method=’ward’)

160

Single vs. Complete Linkage

dsingle(ch 02) = min ”LE’ - y”; dcomplete(cla CZ) = max HCE - Z/H

z€C,yeCs zeC,yeCs

Explanation: Single linkage merges clusters based on the smallest
distance between points, while complete linkage uses the largest distance.

They influence the shape of hierarchical clustering.

Implementation:

from scipy.cluster.hierarchy import linkage
Z_single = linkage(X, method=’single’)

Z_complete = linkage(X, method=’complete’)

161

Average Linkage

daverage(clucQ |C || Z Z ”LE’ y”

x€C1 yeCly

Explanation: Average linkage computes the average distance between
all pairs of points in two clusters, balancing the extremes of single and

complete linkage.

Implementation:

Z_average = linkage(X, method=’average’)

162

Minimum Spanning Tree Criterion

MST weight = Z w(u,v), w(u,v)=|u—uv
(u,v)EE

Explanation: The minimum spanning tree (MST) connects all points
with the minimum total edge weight, often used in clustering to detect

dense regions.

Implementation:

from scipy.sparse.csgraph import minimum_spanning_tree

mst = minimum_spanning_tree(distance_matrix (X))

163

DBSCAN Core Point Condition

|Neighbors(x)| > MinPts, where Neighbors(x) = {y : ||[x — y|| < €}

Explanation: A core point in DBSCAN must have at least MinPts

neighbors within a distance e.

Implementation:

core_condition = len(neighbors) >= MinPts

164

DBSCAN Density Condition

Density-connected: 3 a chain of points xj, Xs, . .., X, such that ||x;—x; 1| <€

Explanation: DBSCAN forms clusters by connecting points that are
density-reachable through chains of neighbors.

Implementation:

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=epsilon, min_samples=MinPts).fit (X)

165

Cohesion Metric

k
Cohesion = Z Z %, — N¢||2

=1 XjECi

Explanation: Cohesion measures the compactness of clusters, where

smaller values indicate tighter clusters.

Implementation:

cohesion = sum(np.linalg.norm(X[labels == i]

- centroids[i], axis=1).sum() for i in range(k))

166

Separation Metric

kook
Separation = Z Z le; — ,ujH2

i=1 j=i+1

Explanation: Separation measures the distance between cluster cen-

troids, where larger values indicate well-separated clusters.

Implementation:

separation = sum(np.linalg.norm(centroids[i]

- centroids[j])**2 for i in range(k) for j in range(i+1l, k))

167

Soft Clustering Membership

¢, ||/ (m=1)
N

Y Xy — e[D

Explanation: Soft clustering assigns membership values u;; to each

point for each cluster, indicating the degree of belonging.

Implementation:

memberships = 1 / (distances**(2/(m-1)) / distances.sum(axis=1, keepdims=True))

168

Entropy for Clustering Evaluation

k n

H=-% % PjlogP;

i=1 j=1

Explanation: Entropy measures the uncertainty in clustering assign-

ments, where lower values indicate clearer clustering.

Implementation:

entropy = -np.sum(P * np.log(P))

169

Mutual Information for Clustering

Ul v P
IUV)=)) Pylog
LAl

i=1 j=1

Explanation: Mutual information measures the shared information

between true and predicted clusters.

Implementation:

from sklearn.metrics import mutual_info_score

mi = mutual_info_score(true_labels, predicted_labels)

170

F-Measure for Clustering

e 2 - Precision - Recall

Precision + Recall

Explanation: The F-measure evaluates clustering performance by bal-

ancing precision and recall.

Implementation:

from sklearn.metrics import fl_score

f_measure = f1_score(true_labels, predicted_labels, average=’weighted’)

171

Adjusted Rand Index (ARI)

ARI — Index — Expected Index

Max Index — Expected Index

Explanation: ARI adjusts the Rand Index for chance, measuring clus-

tering similarity.

Implementation:

from sklearn.metrics import adjusted_rand_score

ari = adjusted_rand_score(true_labels, predicted_labels)

172

Normalized Mutual Information (INMI)

Explanation: NMI normalizes mutual information to compare clus-

tering solutions of different sizes.

Implementation:

from sklearn.metrics import normalized_mutual_info_score

nmi = normalized_mutual_info_score(true_labels, predicted_labels)

173

SECTION 8 : DIMENSIONALITY
REDUCTION

Principal Component Analysis (PCA) Objective

Maximize: Var(z) = w’ Sw, subject to ||wly =1

Explanation: PCA seeks directions (principal components) that max-

imize the variance of projected data while being orthogonal to each other.

Implementation:

from sklearn.decomposition import PCA

pca = PCA(n_components=k) .fit(X)

174

Covariance Matrix for PCA

Explanation: The covariance matrix captures pairwise feature depen-

dencies and is central to PCA.

Implementation:

mean_X = np.mean(X, axis=0)

cov_matrix = np.cov(X - mean_X, rowvar=False)

175

Eigen Decomposition for PCA

Sw = \w

Explanation: PCA uses eigen decomposition of the covariance matrix

to find eigenvalues (variances) and eigenvectors (principal components).

Implementation:

eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

176

SVD (Singular Value Decomposition)

X =UxVv?

Explanation: SVD factorizes a matrix into orthogonal components,

enabling dimensionality reduction by truncating 3.

Implementation:

U, S, Vt = np.linalg.svd(X, full_matrices=False)

177

Reconstruction Error for PCA

Error = |X — X2, X=2ZWT"+X

Explanation: Reconstruction error quantifies the information loss when

reducing dimensionality with PCA.

Implementation:

X_hat = 7Z @ W.T + mean_X

reconstruction_error = np.linalg.norm(X - X_hat, ’fro’)**2

178

Explained Variance Ratio

7

Z;‘L:I)‘j

Explained Variance Ratio =

Explanation: The explained variance ratio quantifies the proportion

of variance captured by each principal component.

Implementation:

explained_variance_ratio = eigenvalues / np.sum(eigenvalues)

179

Cumulative Explained Variance

k

A
Cumulative Explained Variance = Z —_
i—1 E:j:lAj

Explanation: Cumulative explained variance evaluates the total vari-

ance captured by the first £ principal components.

Implementation:

cumulative_explained_variance = np.cumsum(explained_variance_ratio)

180

Random Projection

Xy = XR, R ~N(0,1)

Explanation: Random projection reduces dimensionality by project-
ing data onto a lower-dimensional random matrix while approximately pre-

serving distances.

Implementation:

from sklearn.random_projection import GaussianRandomProjection

rp = GaussianRandomProjection(n_components=k).fit_transform(X)

181

Isomap Distance Matrix

d;; = Shortest Path Distance on G, G = (X, e-Neighborhoods)

Explanation: Isomap computes geodesic distances in a graph of near-

est neighbors to preserve non-linear structures in the data.

Implementation:

from sklearn.manifold import Isomap

isomap = Isomap(n_neighbors=k).fit_transform(X)

182

MDS Stress Function

Stress = Z <dij — cZij>2

1<j

Explanation: The stress function measures the discrepancy between

original and embedded distances in Multidimensional Scaling (MDS).

Implementation:

from sklearn.manifold import MDS

mds = MDS(n_components=2).fit_transform(X)

183

Multidimensional Scaling (MDS)

XMps = arg H%}H Stress(Y)

Explanation: MDS embeds data into a lower-dimensional space while

preserving pairwise distances as much as possible.

Implementation:

from sklearn.manifold import MDS

mds = MDS(n_components=k).fit_transform(X)

184

NMF (Non-Negative Matrix Factorization)

X~WH, W2>0H>0

Explanation: NMF factorizes a non-negative matrix into two lower-
rank non-negative matrices, often used in topic modeling and image pro-

cessing.

Implementation:

from sklearn.decomposition import NMF

nmf = NMF(n_components=k).fit_transform(X)

185

ICA (Independent Component Analysis) Objective

Maximize: Z logp(s;), wheres=WX

=1

Explanation: ICA separates mixed signals into statistically indepen-

dent components by maximizing non-Gaussianity.

Implementation:

from sklearn.decomposition import FastICA

ica = FastICA(n_components=k).fit_transform(X)

186

Factor Analysis Model

X =ZA+e, €~N(0VU)

Explanation: Factor analysis models observed variables as linear com-

binations of latent factors plus noise.

Implementation:

from sklearn.decomposition import FactorAnalysis

fa = FactorAnalysis(n_components=k).fit_transform(X)

187

Kernel PCA Transformation

K = ¢(X)é¢(X)", Eigen Decomposition: Ka = A«

Explanation: Kernel PCA applies PCA in a high-dimensional feature

space defined by a kernel function.

Implementation:

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(kernel=’rbf’, n_components=k).fit_transform(X)

188

LDA (Fisher’s Criterion)

Explanation: LDA finds a projection that maximizes class separation

by optimizing the ratio of between-class to within-class variance.

Implementation:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

lda = LinearDiscriminantAnalysis(n_components=k).fit_transform(X, y)

189

Robust PCA (RPCA)

X=L+S, L.+ AlS]h

Explanation: RPCA decomposes a matrix into a low-rank component

(L) and a sparse component (S).

Implementation:

from r_pca import R_pca

rpca = R_pca(X)

L, S

rpca.fit()

190

Hessian LLE

Minimize: |[WX — X||5, subject to local Hessian alignment

Explanation: Hessian LLE preserves local geometric structures while

optimizing a low-dimensional embedding.

Implementation:

from sklearn.manifold import LocallyLinearEmbedding
hessian_lle = LocallyLinearEmbedding(n_neighbors=k,

method=’hessian’) .fit_transform(X)

191

Laplacian Eigenmaps Objective

Minimize: Z wi;|lyi — y;ll*>, "W = Graph Weights

i’j

Explanation: Laplacian Eigenmaps embeds data while preserving lo-

cal neighborhood information based on a graph structure.

Implementation:

from sklearn.manifold import SpectralEmbedding

laplacian = SpectralEmbedding(n_components=k).fit_transform(X)

192

Autoencoder Reconstruction

X = Decoder(Encoder(X))

Explanation: Autoencoders minimize reconstruction error by com-

pressing data into a latent representation and reconstructing it.

Implementation:

from keras.models import Model

encoded = encoder (X)

decoded = decoder (encoded)

193

Autoencoder Latent Representation

Z = Encoder(X)

Explanation: The latent representation (Z) compresses input data

into a lower-dimensional space for downstream tasks.

Implementation:

latent_representation = encoder.predict(X)

194

Sparse PCA Objective

Maximize: |[XW]|3, subject to sparsity constraints on W

Explanation: Sparse PCA introduces sparsity in the principal compo-

nents to improve interpretability.

Implementation:

from sklearn.decomposition import SparsePCA

spca = SparsePCA(n_components=k) .fit_transform(X)

195

t-SNE Objective

Minimize: K L(P||Q) = Z P log

i#j Qz]

Explanation: t-SNE minimizes the Kullback-Leibler divergence be-

tween high-dimensional and low-dimensional distributions.

Implementation:

from sklearn.manifold import TSNE

tsne = TSNE(n_components=k).fit_transform(X)

196

Gradient of t-SNE

OKL
Y - 42(13” — Qij) (Y — y5)Qj

J

Explanation: The gradient of the t-SNE objective updates low-dimensional

embeddings to align distributions.

197

UMAP (Uniform Manifold Approximation and Pro-

jection)

Optimize: Y " wijlly: — y;lI> = XY wiilog(llyx — mil))
i, k,l

Explanation: UMAP preserves local and global structures by opti-

mizing a balance between distances and densities.

Implementation:

import umap

umap_embedding = umap.UMAP (n_components=k) .fit_transform(X)

198

SECTION 9 : PROBABILITY
DISTRIBUTIONS

Bernoulli Distribution

P(X=x2)=p"(1-p)'" 2€{0,1},0<p<1
Explanation: The Bernoulli distribution models a single binary event,
with success probability p.
Example: For p=0.7, P(X =1) =0.7, P(X =0) = 0.3.

Implementation:

from scipy.stats import bernoulli

prob = bernoulli.pmf(k=1, p=0.7)

199

Binomial Distribution

Explanation: The Binomial distribution models the number of suc-

cesses in n independent Bernoulli trials.

Example: For n = 5 and p = 0.5, P(X = 3) = (3)(0.5)3(0.5)* =
0.3125.

Implementation:

from scipy.stats import binom

prob = binom.pmf (k=3, n=5, p=0.5)

200

Poisson Distribution

Explanation: The Poisson distribution models the number of events

in a fixed interval, with a mean rate .

Example: For A\ =3, P(X =2) = 52;—,73 = 0.224.

Implementation:

from scipy.stats import poisson

prob = poisson.pnf (k=2, mu=3)

201

Uniform Distribution (Continuous)

Explanation: The continuous uniform distribution assigns equal prob-

ability density to all points in [a, b].

Example: For a =0, b= 2, f(1) = 1.

Implementation:

from scipy.stats import uniform

prob = uniform.pdf(x=1, loc=0, scale=2)

202

Discrete Uniform Distribution

Explanation: The discrete uniform distribution assigns equal proba-

bility to n discrete outcomes.

Example: For n =6, P(X =3) = +.

Implementation:

from scipy.stats import randint

prob = randint.pmf (k=3, low=1, high=7)

203

Normal (Gaussian) Distribution

flr) = e T
€Tr) = (& 20
V2mo?

Explanation: The normal distribution models data with a symmetric

bell shape, defined by mean p and standard deviation o.

Example: For y =0, 0 =1, f(0) = = ~ 0.398.

3

Implementation:

from scipy.stats import norm

prob = norm.pdf (x=0, loc=0, scale=1)

204

Exponential Distribution

fx)y=Xe™, >0

Explanation: The exponential distribution models the time between

events in a Poisson process.

Example: For A =2, f(1) = 2¢72 ~ 0.271.

Implementation:

from scipy.stats import expon

prob = expon.pdf(x=1, scale=1/2)

205

Geometric Distribution

Explanation: The geometric distribution models the number of trials

until the first success in repeated Bernoulli trials.

Example: For p = 0.5, P(X = 3) = (0.5)*(0.5) = 0.125.

Implementation:

from scipy.stats import geom

prob = geom.pnf (k=3, p=0.5)

206

Hypergeometric Distribution

(i) Coi)

()
Explanation: The hypergeometric distribution models successes in n
draws without replacement from a population of N with K successes.

Example: For N =20, K =7, n=25, P(X = 3).

Implementation:

from scipy.stats import hypergeom

prob = hypergeom.pnf (k=3, M=20, n=5, N=7)

207

Beta Distribution

Explanation: The Beta distribution models probabilities as a function

of parameters o and £.

Example: For a =2, § = 3, compute f(0.5).

Implementation:

from scipy.stats import beta

prob = beta.pdf(x=0.5, a=2, b=3)

208

Gamma Distribution

x>0

Explanation: The Gamma distribution generalizes the exponential

distribution, often used for waiting times.

Example: For a =2, § =1, compute f(1).

Implementation:

from scipy.stats import gamma

prob = gamma.pdf(x=1, a=2, scale=1/1)

209

Multinomial Distribution

P(Xy =k, ..., Xp=ki) = TURRRE

kyl- - k!

Explanation: The multinomial distribution generalizes the binomial
distribution for multiple categories.

Example: For n =3, p=10.2,0.5,0.3], and k = [1, 1, 1].

Implementation:

from scipy.stats import multinomial

prob = multinomial.pmf(x=[1, 1, 1], n=3, p=[0.2, 0.5, 0.3])

210

Chi-Square Distribution

k21 p—x/2

f(%):m, x>0

Explanation: The chi-square distribution models the sum of squares
of k independent standard normal variables, commonly used in hypothesis

testing.
Example: For k = 3, compute f(2).

Implementation:

from scipy.stats import chi2

prob = chi2.pdf (x=2, df=3)

211

Student’s t-Distribution

fx) =

v

L((v+1)/2) g?\
e (1+7)

Explanation: The Student’s t-distribution is used for estimating pop-

ulation parameters when the sample size is small.
Example: For v = 5, compute f(1).

Implementation:

from scipy.stats import t

prob = t.pdf(x=1, df=5)

212

F-Distribution

d1 —(d1+d2)/2
dix dix
\/ (%) (1+%)
fz) =

0
2B(d1 /2, d/2) T2

Explanation: The F-distribution models the ratio of variances and is

commonly used in ANOVA tests.

Implementation:

from scipy.stats import f

prob = f.pdf(x=2, dfn=5, dfd=10)

213

Laplace Distribution

Explanation: The Laplace distribution, also known as the double ex-

ponential distribution, is used for modeling differences in data.

Implementation:

from scipy.stats import laplace

prob = laplace.pdf (x=0, loc=0, scale=1)

214

Rayleigh Distribution

Explanation: The Rayleigh distribution models the magnitude of a

two-dimensional vector with independent normal components.

Implementation:

from scipy.stats import rayleigh

prob = rayleigh.pdf (x=2, scale=1)

215

Triangular Distribution

2(z—a)

Taeay ¢ST<C
fla) = (Q(b)())

ot €STSD

Explanation: The triangular distribution models data with a known

minimum, maximum, and mode.

Implementation:

from scipy.stats import triang

prob = triang.pdf(x=0.5, ¢=0.5, loc=0, scale=1)

216

Log-Normal Distribution

Explanation: The log-normal distribution models data whose loga-

rithm follows a normal distribution.

Implementation:

from scipy.stats import lognorm

prob = lognorm.pdf (x=2, s=1, scale=np.exp(0))

217

Arcsine Distribution

Explanation: The arcsine distribution models probabilities with end-

points more likely than the middle.

Implementation:

from scipy.stats import arcsine

prob = arcsine.pdf (x=0.5)

218

Beta-Binomial Distribution

(st

Explanation: The beta-binomial distribution models overdispersed bi-

nomial outcomes using a Beta prior.

Implementation:

from scipy.stats import betabinom

prob = betabinom.pmf(k=2, n=5, a=2, b=3)

219

Cauchy Distribution

fz) =

Explanation: The Cauchy distribution models data with heavy tails,

often used in robust statistics.

Implementation:

from scipy.stats import cauchy

prob = cauchy.pdf (x=0, loc=0, scale=1)

220

Weibull Distribution

Explanation: The Weibull distribution is used for reliability analysis

and modeling lifetimes.

Implementation:

from scipy.stats import weibull_min

prob = weibull_min.pdf (x=2, c=1.5, scale=1)

221

Pareto Distribution

Explanation: The Pareto distribution models wealth distribution and

heavy-tailed phenomena.

Implementation:

from scipy.stats import pareto

prob = pareto.pdf (x=2, b=1)

222

Log-Cauchy Distribution

Explanation: The log-Cauchy distribution is the logarithmic trans-

form of the Cauchy distribution, with heavy tails.

223

SECTION 10 : REINFORCEMENT
LEARNING

Reward Function

R(s,a) = E[Reward | s, a]

Explanation: The reward function provides the immediate reward

received after taking action a in state s, guiding the agent’s behavior.

Implementation:

def reward_function(state, action):
Example reward calculation

return rewards[state, action]

224

Discounted Return

Gy = Z’Vth+k+1, 0<~y<1
k=0

Explanation: The discounted return accumulates rewards over time,

weighting future rewards by the discount factor ~.

Implementation:

def discounted_return(rewards, gamma):
G=0
for t, r in enumerate(rewards):
G += (gamma**t) * r

return G

225

Bellman Equation (State-Value Function)

Explanation: The Bellman equation relates the value of a state to the

expected return from it under a policy 7.

Implementation:

def bellman_state_value(s, rewards, transition_prob, gamma, V):

return np.sum(transition_prob[s] * (rewards[s] + gamma * V))

226

Bellman Equation (Action-Value Function)

Q(s,a) = E[R(s,a) + 7V (s')]

Explanation: The Bellman equation for the action-value function ex-
presses the value of taking action a in state s and following the policy

afterward.

Implementation:

def bellman_action_value(s, a, rewards, transition_prob, gamma, V):

return rewards[s, a] + gamma * np.sum(transition_prob[s, al] * V)

227

Temporal Difference (TD) Update

Vi(sy) < V(s) + a[Rir1 + YV (s441) — V(sy)]

Explanation: The TD update improves the value estimate of a state

by using the difference between predicted and actual returns.

Implementation:

def td_update(V, state, reward, next_state, alpha, gamma):

V[state] += alpha * (reward + gamma * V[next_state] - V[state])

228

Monte Carlo Policy Evaluation

V(s) < E[G; | s¢ = §]

Explanation: Monte Carlo evaluation updates the value of a state by

averaging returns from multiple episodes starting from that state.

Implementation:

def monte_carlo_evaluation(V, state_returns, state_counts):
for state, returns in state_returns.items():

V[state] = np.mean(returns)

229

Policy Improvement

7'(s) = argmax Q(s,a)

Explanation: Policy improvement updates the policy by choosing the

action that maximizes the action-value function.

Implementation:

def policy_improvement(Q) :

return np.argmax(Q, axis=1)

230

Q-Learning Update

Q(st,ar) < Q(s1,a1) + a | Reyr + 7y max Q(St+1,a) — Q(st, ar)

Explanation: Q-learning is an off-policy algorithm that updates action-

value estimates using the maximum future Q-value.

Implementation:

def q_learning_update(Q, state, action, reward, next_state, alpha, gamma):
Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state])

- Q[state, action])

231

SARSA Update

Q(5¢,ar) <= Q(s¢,a1) + o [Regy + vQ(S141, arg1) — Q51 ar)]

Explanation: SARSA is an on-policy algorithm that updates Q-values

based on the action actually taken under the current policy.

Implementation:

def sarsa_update(Q, state, action, reward,
next_state, next_action, alpha, gamma):
Q[state, action] += alpha * (reward + gamma * Q[next_state, next_action]

- Q[state, action])

232

Value Iteration Update

V(s) + max R(s,a)+ VZ P(s" | s,a)V(s)

s

Explanation: Value iteration iteratively updates state values by find-

ing the optimal action at each step.

Implementation:

def value_iteration(V, rewards, transition_prob, gamma):
for s in range(len(V)):
V[s] = max(np.sum(transition_prob[s, al * (rewards[s, al

+ gamma * V)) for a in range(num_actions))

233

Actor—Critic Policy Update

0 < 0+ aVglogmg(as | 51)0s, 6 = Riv1 + vV (s141) — V(se)

Explanation: The actor updates the policy using the advantage, while

the critic updates the value function to estimate the advantage.

Implementation:

def actor_critic_update(actor, critic, state, action, reward, next_state,
alpha, gamma):
delta = reward + gamma * critic[next_state] - critic[state]
actor.update(state, action, alpha * delta)

critic[state] += alpha * delta

234

Deterministic Policy Gradient

VJ(0) = By pr [VaQ(s,a)Vora(s)]

Explanation: Deterministic policy gradients update the policy directly

in a continuous action space using gradients of the Q-function.

Implementation:

def deterministic_policy_gradient(policy, q_function, state, alpha):
action = policy(state)
grad_q = gq_function.gradient(state, action)
grad_pi = policy.gradient(state)

policy.update(state, alpha * np.dot(grad_q, grad_pi))

235

Discount Factor ()

G = ZVthJrkH, 0<~y<l1
k=0

Explanation: The discount factor determines the weight given to fu-
ture rewards. A smaller v prioritizes immediate rewards, while a larger ~

considers longer-term rewards.

Implementation:

def discounted_return(rewards, gamma):
G=20
for t, r in enumerate(rewards):
G += (gammax*t) * r

return G

236

Expected SARSA

Q(st,ar) < Q(1, ar) + [Rigr + VEw [Q (5141, a')] — Q(8¢, ay)]

Explanation: Expected SARSA updates Q-values using the expected

value of the next action, improving stability over standard SARSA.

Implementation:

def expected_sarsa(Q, state, action, reward, next_state, policy, alpha, gamma):
expected_value = np.sum(policy[next_state] * Q[next_state])
Q[state, action] += alpha * (reward + gamma * expected_value

- Q[state, action])

237

Eligibility Traces Update (TD()))

e; = ")/>\et71 + V@V(St), 0+ 0 + Oé(;tet

Explanation: TD(\) combines TD and Monte Carlo methods using

eligibility traces, balancing bias and variance in value updates.

Implementation:

def td_lambda_update(V, eligibility, state, reward, next_state, alpha,
gamma, lambda_):
delta = reward + gamma * V[next_state] - V[statel
eligibility[state] += 1
V += alpha * delta * eligibility

eligibility *= gamma * lambda_

238

TD Error

(St = Rt+1 + ’Yv<8t+1> — V(St)

Explanation: The TD error measures the difference between predicted

and observed rewards, guiding updates in temporal difference learning.

Implementation:

def td_error(V, state, reward, next_state, gamma):

return reward + gamma * V[next_state] - V[statel

239

Stochastic Gradient Descent in RL

00— aVel(h)

Explanation: Stochastic gradient descent updates model parameters

by minimizing a loss function, often used in function approximation for RL.

Implementation:

def sgd_update(theta, grad, alpha):

return theta - alpha * grad

240

Double Q-Learning

Q1(5¢, ar) <= Q1(5¢, ap)+a | Ry + 7Q2(5¢41, arg m;iX Q1(5¢41,a)) — Q1(5¢, ar)

Explanation: Double Q-learning reduces overestimation bias by alter-

nating updates between two Q-functions.

Implementation:

def double_q_learning update(Ql, Q2, state, action, reward, next_state,
alpha, gamma):

max_action = np.argmax(Ql[next_state])

target = reward + gamma * Q2[next_state, max_action]

Q1l[state, action] += alpha * (target - Ql[state, action])

241

Advantage Actor—Critic (A2C)

O = Rep1 + 7V (8441) = V(51), 04 04 aVglogmg(ay | 5¢)d

Explanation: A2C uses the advantage function to reduce variance in

policy updates while learning the value function as a baseline.

Implementation:

def a2c_update(actor, critic, state, action, reward, next_state, alpha, gamma):
delta = reward + gamma * critic[next_state] - critic[state]
actor.update(state, action, alpha * delta)

critic[state] += alpha * delta

242

Off-Policy Evaluation (Importance Sampling)

Explanation: Importance sampling corrects for discrepancies between

the behavior policy p and the target policy m when estimating returns.

Implementation:

def importance_sampling(weights, returns):

return np.sum(weights * returns)

243

Policy Gradient Update Rule

0 < 0+ aVyE,, [Gilogma(a; | s¢)]

Explanation: The policy gradient algorithm updates parameters in

the direction of performance improvement, directly optimizing the policy.

Implementation:

def policy_gradient_update(policy, rewards, states, actions, alpha):
for state, action, reward in zip(states, actions, rewards):
grad = policy.gradient(state, action)

policy.update(state, action, alpha * reward * grad)

244

Soft Q-Learning Objective

L=E,,[Qs,a) - alogn(a]s)]

Explanation: Soft Q-learning optimizes a policy by balancing reward

maximization and entropy regularization.

Implementation:

def soft_q_update(Q, policy, state, action, reward, next_state, alpha, gamma):
entropy = -policy.log_prob(action, state)
target = reward + gamma * (Q[next_state].max() + alpha * entropy)

Q[state, action] += alpha * (target - Q[state, action])

245

Entropy-Regularized RL

7" = argmax E[G,] + aH ()

Explanation: Entropy regularization encourages exploration by max-

imizing the entropy of the policy.

Implementation:

def entropy_regularized_update(policy, rewards, states,
actions, alpha, entropy_coeff):
for state, action, reward in zip(states, actions, rewards):
entropy = -policy.log_prob(action, state)
grad = policy.gradient(state, action)
policy.update(state, action, alpha *

(reward + entropy_coeff * entropy) * grad)

246

Soft Actor—Critic (SAC)

L=E.q[Q(s,a) —alogm(a|s)], Qs,a) = R+7V(s)

Explanation: SAC combines entropy regularization with actor—critic

methods to improve stability and exploration in continuous control.

Implementation:

def sac_update(Q, policy, state, action, reward, next_state, alpha, gamma):
entropy = -policy.log_prob(action, state)
target = reward + gamma * (Q[next_state].max() + alpha * entropy)

Q[state, action] += alpha * (target - Q[state, action])

247

Trust Region Policy Optimization (TRPO)

molals)

A(s,a)|, subject to Dk (mg||m)
7Teold(a“ | S) () J KL(GH 001d>

max [E,,
0

248

