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Part 1

Linear Algebra






Chapter 1

Matrices

1.1 Definition of a Matrix

Definition 1.1.1 (Matrix) A rectangular array of numbers is called a matrix.

We shall mostly be concerned with matrices having real numbers as entries.
The horizontal arrays of a matrix are called its ROWS and the vertical arrays are called its COLUMNS.
A matrix having m rows and n columns is said to have the order m X n.

A matrix A of ORDER m X n can be represented in the following form:

a1 a12 te Q1n

a21 a22 te a2n
A= . . s

aml Am2 - Amn

h th

where a;; is the entry at the intersection of the 0 row and 7+ column.

In a more concise manner, we also denote the matrix A by [a,;] by suppressing its order.

a1 a2 - Qip
G21 Q22 - Q2p .
Remark 1.1.2 Some books also use . . ) . to represent a matrix.
am1  Am2 " Amn
1 3 7
Let A= 5 6 . Then all = 1, a1 = 3, a1z = 7, a1 = 4, ag9 — 5, and ag3 = 6.

A matrix having only one column is called a COLUMN VECTOR; and a matrix with only one row is
called a ROW VECTOR.

WHENEVER A VECTOR IS USED, IT SHOULD BE UNDERSTOOD FROM THE CONTEXT WHETHER IT IS
A ROW VECTOR OR A COLUMN VECTOR.

Definition 1.1.3 (Equality of two Matrices) Two matrices A = [a;;] and B = [b;;] having the same order

m x n are equal if a;; = b;; foreach¢=1,2,...,mand j =1,2,...,n.

In other words, two matrices are said to be equal if they have the same order and their corresponding

entries are equal.
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Example 1.1.4 The linear system of equations 2z + 3y = 5 and 3z + 2y = 5 can be identified with the

12 3 b
matrix .
3 2 : 5

1.1.1  Special Matrices

Definition 1.1.5 1. A matrix in which each entry is zero is called a zero-matrix, denoted by 0. For

0 0 0 0 O
2x2 [O 01 an 2x3 [O 0 O]

2. A matrix having the number of rows equal to the number of columns is called a square matrix. Thus,

example,

its order is m x m (for some m) and is represented by m only.

3. In a square matrix, A = [a;;], of order n, the entries a11, a2z, ..., ann are called the diagonal entries
and form the principal diagonal of A.

4. A square matrix A = [a;4] is said to be a diagonal matrix if a;; = 0 for i # j. In other words, the

. . . . 4 0

non-zero entries appear only on the principal diagonal. For example, the zero matrix 0,, and [O 1]
are a few diagonal matrices.
A diagonal matrix D of order n with the diagonal entries d1, ds, . . ., d,, is denoted by D = diag(d1, . .., d,).
If d; =d foralli=1,2,...,n then the diagonal matrix D is called a scalar matrix.

1 if 1=j

0 if i#j
is called the identity matrix, denoted by I,.

5. A square matrix A = [a;;] with a;; =

1
1 0
For example, Ir = lo 1] ,and I3 = |0

0
0
0 0 1

The subscript n is suppressed in case the order is clear from the context or if no confusion arises.

6. A square matrix A = [a;;] is said to be an upper triangular matrix if a;; = 0 for ¢ > j.
A square matrix A = [a;;] is said to be an lower triangular matrix if a;; = 0 for i < j.

A square matrix A is said to be triangular if it is an upper or a lower triangular matrix.

2 1 4
For example [0 3 —1| is an upper triangular matrix. An upper triangular matrix will be represented
{O 0 —2J
ailp aiz - Qi
0 ax - a2
by
0 0 - anpn

1.2 Operations on Matrices

Definition 1.2.1 (Transpose of a Matrix) The transpose of an m x n matrix A = [a;;] is defined as the
n X m matrix B = [b;;], with b;; = aj; for 1 <i <m and 1 < j <n. The transpose of A is denoted by A".
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That is, by the transpose of an m X n matrix A, we mean a matrix of order n x m having the rows

of A as its columns and the columns of A as its rows.

1 0

4 5
For example, if A = ) 2] then A* = [4 1
5 2

Thus, the transpose of a row vector is a column vector and vice-versa.

Theorem 1.2.2 For any matrix A, we have (4%)" = A.
PRrROOF. Let A = [a;;], A® = [b;;] and (A")" = [c;;]. Then, the definition of transpose gives
Cij = bji = Q5 for all ’L,]

and the result follows. O

Definition 1.2.3 (Addition of Matrices) let A = [a;;] and B = [b;;] be are two m x n matrices. Then the
sum A + B is defined to be the matrix C' = [¢;;] with ¢;; = a;; + b;j.

Note that, we define the sum of two matrices only when the order of the two matrices are same.

Definition 1.2.4 (Multiplying a Scalar to a Matrix) Let A = [a;;] be an m x n matrix. Then for any
element k € R, we define kA = [ka;].

1 4 5

and k =5, then 5A =
0 1

For example, if A =
0 5 10

5 20 25]

Theorem 1.2.5 Let A, B and C be matrices of order m x n, and let k,£ € R. Then
1. A+ B=B+A (commutativity).
2. (A+B)+C=A+(B+0O) (associativity).
3. k(tA) = (kb)A.
4. (k+0)A=kEA+ (A

Proor. Part 1.
Let A= [aij] and B = [blj] Then

A+ B = [ay] + [bij] = [aij + bij] = [bij + aij] = [big] + [ay] = B+ A

as real numbers commute.
The reader is required to prove the other parts as all the results follow from the properties of real

numbers. O

Exercise 1.2.6 1. Suppose A + B = A. Then show that B = 0.

2. Suppose A+ B = 0. Then show that B = (—1)A = [—ay;].

Definition 1.2.7 (Additive Inverse) Let A be an m X n matrix.

1. Then there exists a matrix B with A + B = 0. This matrix B is called the additive inverse of A, and
is denoted by —A = (—1)A.

2. Also, for the matrix 0,,,x,, A+0 =0+ A = A. Hence, the matrix 0,,x,, is called the additive identity.
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1.2.1 Multiplication of Matrices

Definition 1.2.8 (Matrix Multiplication / Product) Let A = [a;;] be an m X n matrix and B = [b;;] be
an n x r matrix. The product AB is a matrix C' = [c;;] of order m x r, with

n
Cij = E @ikbrj = aibij + aigbaj + -+ - + ainbn;.
k=1

Observe that the product AB is defined if and only if
THE NUMBER OF COLUMNS OF A = THE NUMBER OF ROWS OF B.

1 2 1
1 2 3
For example, if A = and B= |0 0 3| then
1 0 4

1+0+3 24040 1+6+12
24041 44+0+0 241244

AB =

|4 2 19

13 4 18|’

Note that in this example, while AB is defined, the product BA is not defined. However, for square
matrices A and B of the same order, both the product AB and BA are defined.

Definition 1.2.9 Two square matrices A and B are said to commute if AB = BA.

Remark 1.2.10 1. Note that if A is a square matrix of order n then Al,, = I, A. Also for any d € R,
the matrix dI, commutes with every square matrix of order n. The matrices dI,, for any d € R
are called SCALAR matrices.

2. In general, the matrix product is not commutative. For example, consider the following two

1

0
matrices A = ol Then check that the matrix product

2 0 1 1
0 01 7 [1 1
Theorem 1.2.11 Suppose that the matrices A, B and C are so chosen that the matrix multiplications are
defined.

1
]andB:
0

AB = = BA.

1. Then (AB)C = A(BC). That is, the matrix multiplication is associative.
2. Forany k € R, (kA)B = k(AB) = A(kB).
3. Then A(B + C) = AB + AC. That is, multiplication distributes over addition.

4. If Ais an n x n matrix then AI, = I, A = A.

(&)

. For any square matrix A of order n and D = diag(dy,do, . ..,dy), we have

e the first row of DA is d; times the first row of A;

e for 1 < i< n, the it row of DA is d; times the it row of A.
A similar statement holds for the columns of A when A is multiplied on the right by D.

PrOOF. Part 1. Let A= [aijlmxn: B = [bijlnxp and C = [¢i;]pxq- Then

p n
(BC)k; = Zbké%‘ and (AB); = Zaikbké-
=1 k=1
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Therefore,
P
(A(BC))ij = Z ai (BC),, Zal’“ Z brece;)
=1
n P p
= Zzalk (breces) = Z(aikbkf)clj
k=1 =1 k=1 ¢=1
P n t
= Y O abre)ey; = (AB),,c
=1 k=1 =1
= ((4B)C),;.
Part 5.  Forall j =1,2,...,n, we have
A)ij = Z digar; = dia;;
k=1
as d;r = 0 whenever i # k. Hence, the required result follows.
The reader is required to prove the other parts. O

Exercise 1.2.12 1. Let A and B be two matrices. If the matrix addition A 4+ B is defined, then prove
that (A + B)" = A" + B". Also, if the matrix product AB is defined then prove that (AB)" = B*A".

by

ba
2. Let A=[a1,as,...,a,) and B = | _ | . Compute the matrix products AB and BA.

bn

3. Let n be a positive integer. Compute A™ for the following matrices:

1 11 1 11
1 1
) 0 1 1], 1 11
0 1
0 0 1 111

Can you guess a formula for A™ and prove it by induction?
4. Find examples for the following statements.

(a) Suppose that the matrix product AB is defined. Then the product BA need not be defined.

(b) Suppose that the matrix products AB and BA are defined. Then the matrices AB and BA can
have different orders.

(c) Suppose that the matrices A and B are square matrices of order n. Then AB and BA may or
may not be equal.
1.3 Some More Special Matrices

Definition 1.3.1 1. A matrix A over R is called symmetric if A* = A and skew-symmetric if A* = —A.

2. A matrix A is said to be orthogonal if AA* = A'A = 1.

1 2 3 0o 1 2
Example 1.3.2 l. LetA=1|2 4 —1fandB=|-1 0 -3]|.Then Aisasymmetric matrix and
3 -1 4 -2 3 0

B is a skew-symmetric matrix.
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1 1 1
V3o V3B V3
2. Let A= \/Li _\/Li 0 | . Then A is an orthogonal matrix.
1 1 2
V6 V6 VB
o 1 ifi=j5+1
3. Let A = [a;4] be an n x n matrix with a;; = .Then A" =0and A* A#0for1 < /¢ <

0 otherwise
n — 1. The matrices A for which a positive integer k exists such that A* = 0 are called NILPOTENT
matrices. The least positive integer k for which A¥ = 0 is called the ORDER OF NILPOTENCY.

1 0

4. Let A = . Then A2 = A. The matrices that satisfy the condition that A? = A are called

IDEMPOTENT matrices.

Exercise 1.3.3 1. Show that for any square matrix A, S = 1(A + A") is symmetric, T' = $(A — A') is
skew-symmetric, and A =S5+ T.

2. Show that the product of two lower triangular matrices is a lower triangular matrix. A similar statement

holds for upper triangular matrices.
3. Let A and B be symmetric matrices. Show that AB is symmetric if and only if AB = BA.
4. Show that the diagonal entries of a skew-symmetric matrix are zero.
5. Let A, B be skew-symmetric matrices with AB = BA. Is the matrix AB symmetric or skew-symmetric?
6. Let A be a symmetric matrix of order n with A2 = 0. Is it necessarily true that A = 0?

7. Let A be a nilpotent matrix. Show that there exists a matrix B such that B(U+ A) =1 = (I + A)B.

1.3.1 Submatrix of a Matrix

Definition 1.3.4 A matrix obtained by deleting some of the rows and/or columns of a matrix is said to be

a submatrix of the given matrix.

1 4
For example, if A =

j , a few submatrices of A are

1) 2, H 8], [; ,

1 4 1 4
But the matrices L O] and [O 2] are not submatrices of A. (The reader is advised to give reasons.)

A.

3

Miscellaneous Exercises

Exercise 1.3.5 1. Complete the proofs of Theorems 1.2.5 and 1.2.11.

!Ell _ |f/1
) y -
Z2 Y2

and y = Bx.

1 0 cosf) —sinf

0 -1

2. Letx = , A= and B =

1 . Geometrically interpret y = Ax

sinf  cos@

3. Consider the two coordinate transformations
1 = 0a11Y1 + a12y2 and Y1 = bi1z1 + b2z
To = ag1y1 + azys2 Y2 = ba1z1 + baza
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(a) Compose the two transformations to express 1, x2 in terms of z1, zo.

(b) If x! = [z1, z2], ¥' = [y1, y2] and z' = [z1, 25] then find matrices A, B and C such that
x = Ay, y = Bz and x = Cz.

(c) IsC = AB?
4. For a square matrix A of order n, we define trace of A, denoted by tr (A) as
tr (A) = a11 + az2 + - Gpn.
Then for two square matrices, A and B of the same order, show the following:

(a) tr (A+ B) =tr (A) +tr (B).
(b) tr (AB) = tr (BA).

5. Show that, there do not exist matrices A and B such that AB — BA = cI,, for any ¢ # 0.
6. Let A and B be two m x n matrices and let x be an n x 1 column vector.

(a) Prove that if Ax = 0 for all x, then A is the zero matrix.

(b) Prove that if Ax = Bx for all x, then A = B.

7. Let A be an n X n matrix such that AB = BA for all n X n matrices B. Show that A = o for some

a e R.
1 2
8. Let A = {2 1J . Show that there exist infinitely many matrices B such that BA = I5. Also, show
3 1

that there does not exist any matrix C' such that AC = Is.

1.3.1 Block Matrices

Let A be an n X m matrix and B be an m X p matrix. Suppose r < m. Then, we can decompose the
H

matrices A and B as A =[P Q] and B = x| where P has order n x r and H has order r x p. That

is, the matrices P and @ are submatrices of A and P consists of the first » columns of A and @ consists
of the last m — r columns of A. Similarly, H and K are submatrices of B and H consists of the first r

rows of B and K consists of the last m — r rows of B. We now prove the following important theorem.

Theorem 1.3.6 Let A = [a;;] = [P Q] and B = [b;j] =

g] be defined as above. Then

AB = PH + QK.

PRrROOF. First note that the matrices PH and QK are each of order n x p. The matrix products PH
and QK are valid as the order of the matrices P, H,Q and K are respectively, n x r, r X p, n x (m —r)
and (m—7) xp. Let P = [Py;], Q = [Qi;], H = [Hij], and K = [k;;]. Then, for 1 <i<mnand1l<j<p,

we have

(AB);; = Zaikbkazaikbkj"‘ Z @irbr;j
k=1 k=1

k=r+1

= Zpikaj + Z QirKj
=1 k=r+1
= (PH)ij + (QK)y; = (PH + QK);;.
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O
Theorem 1.3.6 is very useful due to the following reasons:
1. The order of the matrices P,Q, H and K are smaller than that of A or B.

2. It may be possible to block the matrix in such a way that a few blocks are either identity matrices

or zero matrices. In this case, it may be easy to handle the matrix product using the block form.

3. Or when we want to prove results using induction, then we may assume the result for r x r
submatrices and then look for (r + 1) x (r + 1) submatrices, etc.

a b
1 2 0
For example, if A = 5 5 O] and B= |c¢ d|, Then
e f
1 2 b 2 b+ 2d
AB — a i 0 e f] = a+2c + .
2 5| |c d 0 2a 4+ 5¢  2b+ 5d
0o -1 2
IfA=]3 1 4 |, then A can be decomposed as follows:
-2 5 =3
, Or
A= 3 1 4 and so on.
| -2 5 | =3 |
mi1 Mo S1 S2
Suppose A = ny P Q| and B= n E F| . Then the matrices P, @, R, S and
ny |R S ro |G H

E, F, G, H, are called the blocks of the matrices A and B, respectively.

Even if A+ B is defined, the orders of P and F may not be same and hence, we may not be able
P+FE Q+F
R+G S+H|

Similarly, if the product AB is defined, the product PE need not be defined. Therefore, we can talk
of matrix product AB as block product of matrices, if both the products AB and PE are defined. And
PE+ QG PF+QH
RE+SG RF+ SH
That is, once a partition of A is fixed, the partition of B has to be properly chosen for

to add A and B in the block form. But, if A+ B and P + E is defined then A+ B =

in this case, we have AB =

purposes of block addition or multiplication.

Exercise 1.3.7 1. Compute the matrix product AB using the block matrix multiplication for the matrices

1 0 1 1 2] 2 1
A 0 1 1 and B — 1 112 1
0 1 0 1 1] 1 1
0 0 1 -1 1}{-1 1
P Q .
2. Let A = ik If P,Q,R and S are symmetric, what can you say about A? Are P,Q,R and S

symmetric, when A is symmetric?
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3.

Let A = [a;;] and B = [b;;] be two matrices. Suppose a;, agz, ..., a, are the rows of A and
b1, ba, ..., b, are the columns of B. If the product AB is defined, then show that
alB
agB
AB = [Aby, Abg, ..., Ab,] = )
a, B

[That is, left multiplication by A, is same as multiplying each column of B by A. Similarly, right
multiplication by B, is same as multiplying each row of A by B.]

1.4 Matrices over Complex Numbers

Here the entries of the matrix are complex numbers. All the definitions still hold. One just needs to

look at the following additional definitions.

Definition 1.4.1 (Conjugate Transpose of a Matrix) 1. Let A be an m xn matrix over C. If A = [a;;]

2.

6

then the Conjugate of A, denoted by A, is the matrix B = [b;;] with b;; = @;;.

1 443 1
1 1—2

i 1 4—3¢ —z .
0 1 —i—2

Let A be an m x n matrix over C. If A = [a;;] then the Conjugate Transpose of A, denoted by A*, is
the matrix B = [bij] with bij = aj;.

1 4+30 ¢

0 1 i—2

For example, Let A =

] . Then

For example, Let A =

] . Then

A square matrix A over C is called Hermitian if A* = A.
A square matrix A over C is called skew-Hermitian if A* = —A.
A square matrix A over C is called unitary if A*A = AA* = 1.

A square matrix A over C is called Normal if AA* = A*A.

Remark 1.4.2 If A = [a;;] with a;; € R, then A* = A"

Exercise 1.4.3 1. Give examples of Hermitian, skew-Hermitian and unitary matrices that have entries

. Show that for any square matrix 4, S =

with non-zero imaginary parts.

. Restate the results on transpose in terms of conjugate transpose.

A—A"
2

AEA" s Hermitian, 7' = is skew-Hermitian, and

A=5+T.

. Show that if A is a complex triangular matrix and AA* = A*A then A is a diagonal matrix.
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Chapter 2

Linear System of Equations

2.1 Introduction

Let us look at some examples of linear systems.

1. Suppose a,b € R. Consider the system ax = b.

b

a’

(a) If a # 0 then the system has a UNIQUE SOLUTION z =
(b) If a =0 and
i. b # 0 then the system has NO SOLUTION.

ii. b =0 then the system has INFINITE NUMBER OF SOLUTIONS, namely all z € R.

2. We now consider a system with 2 equations in 2 unknowns.
Consider the equation ax + by = c. If one of the coefficients, a or b is non-zero, then this linear

equation represents a line in R2. Thus for the system
a1z + b1y =c1 and asx + boy = co,

the set of solutions is given by the points of intersection of the two lines. There are three cases to

be considered. Each case is illustrated by an example.

(a) UNIQUE SOLUTION
x+ 2y =1and z + 3y = 1. The unique solution is (z,y)* = (1,0)".
Observe that in this case, a1bs — asby # 0.

(b) INFINITE NUMBER OF SOLUTIONS
x + 2y =1 and 2z + 4y = 2. The set of solutions is (z,y)! = (1 — 2y,y)" = (1,0)" +y(-2,1)
with y arbitrary. In other words, both the equations represent the same line.
Observe that in this case, a1bs — asby = 0, ai1co — ascy = 0 and byco — bacy = 0.

(¢c) No SoLuTIiON
x4+ 2y = 1 and 2x + 4y = 3. The equations represent a pair of parallel lines and hence there
is no point of intersection.
Observe that in this case, a1b2 — asby = 0 but ajce — ascq; # 0.

3. As a last example, consider 3 equations in 3 unknowns.
A linear equation ax + by + cz = d represent a plane in R?® provided (a, b, c) # (0,0,0). As in the
case of 2 equations in 2 unknowns, we have to look at the points of intersection of the given three

planes. Here again, we have three cases. The three cases are illustrated by examples.

10
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(a) UNIQUE SOLUTION
Consider the system x+y+2 =3, z+4y+22z =7 and 4o+ 10y — 2z = 13. The unique solution
to this system is (x,y, 2)! = (1,1,1); i.e. THE THREE PLANES INTERSECT AT A POINT.

(b) INFINITE NUMBER OF SOLUTIONS
Consider the system  +y + 2 =3, x + 2y + 2z = 5 and 3z + 4y + 4z = 11. The set of
solutions to this system is (z,y,2)! = (1,2 — z,2)! = (1,2,0)* + 2(0, —1, 1)!, with z arbitrary:
THE THREE PLANES INTERSECT ON A LINE.

(¢c) No SoLuTIiON
The system x +y 4+ 2 =3, =+ 2y + 2z =5 and 3z + 4y + 4z = 13 has no solution. In this
case, we get three parallel lines as intersections of the above planes taken two at a time.

The readers are advised to supply the proof.

2.2 Definition and a Solution Method

Definition 2.2.1 (Linear System) A linear system of m equations in n unknowns x1, o, ..., x, is a set of
equations of the form

a;1r1 +aipra + -+ a1, = by

az2171 + age®z + -+ a2, Ty = bo
(2.2.1)

Am1%1 + Qoo + -+ + QmnTn = by

where for 1 < ¢ < m,and 1 < j < m; a;;,b; € R. Linear System (2.2.1) is called HOMOGENEOUS if
by =0=by =--- =b,, and NON-HOMOGENEOUS otherwise.

We rewrite the above equations in the form Ax = b, where

ail a2 - A1n T1 b1

a1 a2 - A2n T2 bo
A= ] ] ] , x=| _ |,and b=

Am1 Am?2 Tt Amn Tn bm

The matrix A is called the COEFFICIENT matrix and the block matrix [4 b], is the AUGMENTED

matrix of the linear system (2.2.1).

Remark 2.2.2 Observe that the it2 row of the augmented matrix [A b] represents the ith

th

equation

and the j th column of the coefficient matrix A corresponds to coefficients of the j* variable x;. That

is, for 1 <4 <m and 1 < j < n, the entry a;; of the coefficient matrix A corresponds to the ith equation

and jth variable x;..

For a system of linear equations Ax = b, the system Ax = 0 is called the ASSOCIATED HOMOGENEOUS
SYSTEM.

Definition 2.2.3 (Solution of a Linear System) A solution of the linear system Ax = b is a column vector
y with entries y1,y2, ..., yn such that the linear system (2.2.1) is satisfied by substituting y; in place of x;.

That is, if y* = [y1,92,. .., yn] then Ay = b holds.
Note: The zero n-tuple x = 0 is always a solution of the system Ax = 0, and is called the TRIVIAL
solution. A non-zero n-tuple x, if it satisfies Ax = 0, is called a NON-TRIVIAL solution.



2.3. ROW OPERATIONS AND EQUIVALENT SYSTEMS 21

2.2.1 A Solution Method

Example 2.2.4 Let us solve the linear system z + 7y + 3z =11, z +y + z = 3, and 4z + 10y — z = 13.
Solution:

1. The above linear system and the linear system

r4+y—+2z =3 Interchange the first two equations.
r+Ty+3z =11 (2.2.2)
dr+ 10y —2z =13

have the same set of solutions. (why?)

2. Eliminating = from 2"d and 374 equation, we get the linear system

r+y+z =3
6y +2z =8 (obtained by subtracting the first
equation from the second equation.)
6y —5z =1 (obtained by subtracting 4 times the first equation
from the third equation.) (2.2.3)

This system and the system (2.2.2) has the same set of solution. (why?)

3. Eliminating y from the last two equations of system (2.2.3), we get the system

r+y+z =3
6y +2z =8
7z =T obtained by subtracting the third equation

from the second equation. (2.2.4)

which has the same set of solution as the system (2.2.3). (why?)

4. The system (2.2.4) and system

T+y+z =3
3y+z =4 divide the second equation by 2
z =1 divide the second equation by 2 (2.2.5)

has the same set of solution. (why?)

4
5. Now, z = 1 implies y = —5— = land z =3—(1+1) = 1. Orin terms of a vector, the set of solution
is { (z,y,2)! : (z,y,2) = (1,1,1)}.

2.3 Row Operations and Equivalent Systems

Definition 2.3.1 (Elementary Operations) The following operations 1, 2 and 3 are called elementary op-
erations.

h -th

1. interchange of two equations, say “interchange the ith and 7" equations”;

(compare the system (2.2.2) with the original system.)
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2. multiply a non-zero constant throughout an equation, say “multiply the jth equation by ¢ #0";
(compare the system (2.2.5) and the system (2.2.4).)

kth

3. replace an equation by itself plus a constant multiple of another equation, say “replace the equation

by kth equation plus ¢ times the jth equation”.

(compare the system (2.2.3) with (2.2.2) or the system (2.2.4) with (2.2.3).)

Observations:

1. In the above example, observe that the elementary operations helped us in getting a linear system

(2.2.5), which was easily solvable.

2. Note that at Step 1, if we interchange the first and the second equation, we get back to the linear
system from which we had started. This means the operation at Step 1, has an inverse operation.
In other words, INVERSE OPERATION sends us back to the step where we had precisely started.
It will be a useful exercise for the reader to IDENTIFY THE INVERSE OPERATIONS at each step in
Example 2.2.4.

So, in Example 2.2.4, the application of a finite number of elementary operations helped us to obtain
a simpler system whose solution can be obtained directly. That is, after applying a finite number of
elementary operations, a simpler linear system is obtained which can be easily solved. Note that the

three elementary operations defined above, have corresponding INVERSE operations, namely,

h th

1. “interchange the ith and 7% equations”,

2. “divide the kth equation by ¢ # 0”;

kth kth h

3. “replace the equation by equation minus ¢ times the jt equation”.

It will be a useful exercise for the reader to IDENTIFY THE INVERSE OPERATIONS at each step in
Example 2.2.4.

Definition 2.3.2 (Equivalent Linear Systems) Two linear systems are said to be equivalent if one can be
obtained from the other by a finite number of elementary operations.

The linear systems at each step in Example 2.2.4 are equivalent to each other and also to the original

linear system.

Lemma 2.3.3 Let Cx = d be the linear system obtained from the linear system Ax = b by a single
elementary operation. Then the linear systems Ax = b and Cx = d have the same set of solutions.

th

PROOF. We prove the result for the elementary operation “the i th equation is replaced by equation

plus ¢ times the jth equation.” The reader is advised to prove the result for other elementary operations.
In this case, the systems Ax = b and Cx = d vary only in the kth equation. Let (a1, 9,...,ay)
be a solution of the linear system Ax = b. Then substituting for «;’s in place of x;’s in the kth and jth

equations, we get
101 + agao + - - Agpoy, = by, and ajioq + ajos + - a0y = by

Therefore,
(ar1 + caji)on + (are + cajo)as + - - - + (akn + cajn)an = b + cb;. (2.3.1)

But then the £th equation of the linear system Cx = d is

(ak1 + caji)zr + (a2 + cajo)zs + - -+ + (apn + cajn)T, = by + cb;. (2.3.2)
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Therefore, using Equation (2.3.1), (a1, aq,...,ay,) is also a solution for the jth Equation (2.3.2).

Use a similar argument to show that if (81, 82, ..., 8,) is a solution of the linear system Cx = d then
it is also a solution of the linear system Ax = b.

Hence, we have the proof in this case. O

Lemma 2.3.3 is now used as an induction step to prove the main result of this section (Theorem
2.3.4).

Theorem 2.3.4 Two equivalent systems have the same set of solutions.

PRrROOF. Let n be the number of elementary operations performed on Ax = b to get Cx = d. We prove
the theorem by induction on n.

If n =1, Lemma 2.3.3 answers the question. If n > 1, assume that the theorem is true for n = m.
Now, suppose n = m+ 1. Apply the Lemma 2.3.3 again at the “last step” (that is, at the (m + l)th step

th

from the m™™" step) to get the required result using induction. O

Let us formalise the above section which led to Theorem 2.3.4. For solving a linear system of equa-
tions, we applied elementary operations to equations. It is observed that in performing the elementary
operations, the calculations were made on the COEFFICIENTS (numbers). The variables x1,x2,..., 2y,
and the sign of equality (that is, “ = ") are not disturbed. Therefore, in place of looking at the system
of equations as a whole, we just need to work with the coefficients. These coeflicients when arranged in

a rectangular array gives us the augmented matrix [A b].

Definition 2.3.5 (Elementary Row Operations) The elementary row operations are defined as:

h -th

1. interchange of two rows, say “interchange the ith and j-" rows”, denoted R;;;
2. multiply a non-zero constant throughout a row, say “multiply the kth row by ¢ # 0", denoted Ry(c);

3. replace a row by itself plus a constant multiple of another row, say “replace the kth row by kth row

plus ¢ times the jt row" denoted Ry;(c).

Exercise 2.3.6 Find the INVERSE row operations corresponding to the elementary row operations that have
been defined just above.

Definition 2.3.7 (Row Equivalent Matrices) Two matrices are said to be row-equivalent if one can be
obtained from the other by a finite number of elementary row operations.

Example 2.3.8 The three matrices given below are row equivalent.

01 1 2 2 0 35 10 % 2
—
2 0 3 5|Ri2|0 1 1 2|Ri(1/2)]0 1 1 2
11 1 3 11 1 3 11 1 3
01 1 2 1 0 1 2
Whereas the matrix [2 0 3 5| is not row equivalent to the matrix |0 2 3 5
1 1 1 3 11 1 3
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2.3.1 Gauss Elimination Method

Definition 2.3.9 (Forward/Gauss Elimination Method) Gaussian elimination is a method of solving a
linear system Ax = b (consisting of m equations in n unknowns) by bringing the augmented matrix

a1 ai2 - Q1n b1
a1 G2 - G2n | b2
[A b] =
Am1 Am2 et Amn bm
to an upper triangular form

€11 Ci2 - Cin dy

0 co2 -+ con | do

0 0 - Cun|dm |

This elimination process is also called the forward elimination method.

The following examples illustrate the Gauss elimination procedure.

Example 2.3.10 Solve the linear system by Gauss elimination method.

y+z = 2
2r+32z = 5
r+y+z = 3
0 1 1
Solution: In this case, the augmented matrix is |2 0 3 5| . The method proceeds along the fol-
11 1 3
lowing steps.
1. Interchange 15t and 224 equation (or Ry2).
2r+3z =5 2 0 3
Y+ z =2
r+y+z =3 1 1 1

2. Divide the 15¢ equation by 2 (or Ry(1/2)).

r+3z =12 10 23
ytz =2 01 1 2
sty+tz =3 11 1 3

3. Add —1 times the 15 equation to the 34 equation (or Rs;(—1)).

et - I
y+z =2 01 1 2
1, _1 11
— 3% =3 01 -3 3
4. Add —1 times the 224 equation to the 3'4 equation (or R3a(—1)).
r+3z =2 10 3 32
y+z =2 01 1 2
3 3 3 _3
—3% =3 00 -5 —3
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5. Multiply the ard equation by %2 (or Rg(—%)).
r+3z =12 10 2 3
y+z =2 01 1 2
z =1 0 0 1 1

The last equation gives z = 1, the second equation now gives y = 1. Finally the first equation gives
x = 1. Hence the set of solutions is (x,vy, 2) = (1,1,1)!, A UNIQUE SOLUTION.

Example 2.3.11 Solve the linear system by Gauss elimination method.

r+y+z = 3
r+2y+2z = 5
3r+4y+42z = 11
11 1 3
Solution: In this case, the augmented matrixis |1 2 2 5 | and the method proceeds as follows:
3 4 4 11

1. Add —1 times the first equation to the second equation.

c+y+z =3 1 1 1 3
y+z =2 01 1 2
3z +4y+4z =11 3 4 4 11
2. Add —3 times the first equation to the third equation.
r+y+z =3 [1 1 1 3]
y+z =2 0 1
y+z =2 10 1 |
3. Add —1 times the second equation to the third equation
+y+ 3 111 3]
x z =
i ) 01 1 2
z =
Y 0 0 0 0

Thus, the set of solutions is (z,y,2)" = (1,2 — 2, 2)" = (1,2,0)! + 2(0, —1, 1), with z arbitrary. In other
words, the system has INFINITE NUMBER OF SOLUTIONS.

Example 2.3.12 Solve the linear system by Gauss elimination method.

r+y+z = 3
r+2y+2z = 5
3r+4y+4z = 12
111 3
Solution: In this case, the augmented matrixis |1 2 2 5 | and the method proceeds as follows:
3 4 4 12

1. Add —1 times the first equation to the second equation.

c+y+z =3 1 1 1 3
y+z =2 01 1 2
3r+4y+4z =12 3 4 4 12
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2. Add —3 times the first equation to the third equation.

r+y+z =3 1 1
y+z =2 01 1 2
y+z =3 0 1 1

3. Add —1 times the second equation to the third equation

r+y+z =3 1 1
y+z =2 01 1
0 =1 0 0 0

The third equation in the last step is
0x 4+ 0y + 0z =1.

This can never hold for any value of x,y, z. Hence, the system has NO SOLUTION.

Remark 2.3.13 Note that to solve a linear system, Ax = b, one needs to apply only the elementary

row operations to the augmented matrix [A b].

2.4 Row Reduced Echelon Form of a Matrix

Definition 2.4.1 (Row Reduced Form of a Matrix) A matrix C is said to be in the row reduced form if
1. THE FIRST NON-ZERO ENTRY IN EACH ROW OF C' IS 1;
2. THE COLUMN CONTAINING THIS 1 HAS ALL ITS OTHER ENTRIES ZERO.

A matrix in the row reduced form is also called a ROW REDUCED MATRIX.

Example 2.4.2 1. One of the most important examples of a row reduced matrix is the n x n identity

matrix, I,,. Recall that the (i,j)th entry of the identity matrix is

1 ifi=j
0 ifi#j

0i; is usually referred to as the Kronecker delta function.

01 0 -1 0 01 0 4 0
2. The matrices 00000 and 00 001 are also in row reduced form.
0 01 1 0 0 01 10
0 00 0 1 0 0 0 0O
1 0 0 0 5
1 1 1 2
3. The matrix 0 is not in the row reduced form. (why?)
0 0 0 1 1
0 0 0 0 O

Definition 2.4.3 (Leading Term, Leading Column) For a row-reduced matrix, the first non-zero entry of
any row is called a LEADING TERM. The columns containing the leading terms are called the LEADING
COLUMNS.
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Definition 2.4.4 (Basic, Free Variables) Consider the linear system Ax = b in n variables and m equa-
tions. Let [C' d] be the row-reduced matrix obtained by applying the Gauss elimination method to the
augmented matrix [A b]. Then the variables corresponding to the leading columns in the first n columns of
[C d] are called the BASIC variables. The variables which are not basic are called FREE variables.

The free variables are called so as they can be assigned arbitrary values and the value of the basic
variables can then be written in terms of the free variables.

Observation: In Example 2.3.11, the solution set was given by
(r,y,2)" = (1,2 — 2z,2)" = (1,2,0)" + 2(0, —1,1)", with z arbitrary.
That is, we had two basic variables, z and y, and z as a free variable.

Remark 2.4.5 It is very important to observe that if there are r non-zero rows in the row-reduced form
of the matrix then there will be r leading terms. That is, there will be r leading columns. Therefore,
IF THERE ARE r LEADING TERMS AND n VARIABLES, THEN THERE WILL BE 7 BASIC VARIABLES AND
n —r FREE VARIABLES.

2.4.1 Gauss-Jordan Elimination

We now start with Step 5 of Example 2.3.10 and apply the elementary operations once again. But this
time, we start with the 31 oy,

I. Add —1 times the third equation to the second equation (or Ras(—1)).

r+3z =2 10 23
y =2 01 0 1
z =1 0 0 1 1

II. Add 52 times the third equation to the first equation (or Ri3(—3)).

z =1 1 00 1
y =1 010 1
z = 001 1

ITII. From the above matrix, we directly have the set of solution as (z,y, z)! = (1,1,1)%.

Definition 2.4.6 (Row Reduced Echelon Form of a Matrix) A matrix C is said to be in the row reduced
echelon form if

1. C'is already in the row reduced form;
2. The rows consisting of all zeros comes below all non-zero rows; and

3. the leading terms appear from left to right in successive rows. That is, for 1 < ¢ < k, let iy be the
leading column of the €th row. Then i1 < ip < -++ < i.

01 0 2 000 10
Example 2.4.7 Suppose A= |0 0 0 O[andB= 1|1 1 0 0 O] areinrow reduced form. Then the
0 0 1 1 0 00 01
01 0 2 110 0 0
corresponding matrices in the row reduced echelon form are respectively, |0 0 1 1|and |0 0 0 1 O
0 00 O 000 01
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Definition 2.4.8 (Row Reduced Echelon Matrix) A matrix which is in the row reduced echelon form is
also called a row reduced echelon matrix.

Definition 2.4.9 (Back Substitution/Gauss-Jordan Method) The procedure to get to Step Il of Example
2.3.10 from Step 5 of Example 2.3.10 is called the back substitution.

The elimination process applied to obtain the row reduced echelon form of the augmented matrix is called
the Gauss-Jordan elimination.

That is, the Gauss-Jordan elimination method consists of both the forward elimination and the backward
substitution.

Method to get the row-reduced echelon form of a given matrix A
Let A be an m x n matrix. Then the following method is used to obtain the row-reduced echelon form
the matrix A.

Step 1: Consider the first column of the matrix A.

If all the entries in the first column are zero, move to the second column.

th row, which contains a non-zero entry in the first column. Now, interchange

Else, find a row, say i
the first row with the ith row. Suppose the non-zero entry in the (1, 1)-position is a # 0. Divide
the whole row by « so that the (1, 1)-entry of the new matrix is 1. Now, use the 1 to make all the

entries below this 1 equal to 0.

Step 2: If all entries in the first column after the first step are zero, consider the right m x (n — 1)

submatrix of the matrix obtained in step 1 and proceed as in step 1.

Else, forget the first row and first column. Start with the lower (m — 1) x (n — 1) submatrix of the

matrix obtained in the first step and proceed as in step 1.

Step 3: Keep repeating this process till we reach a stage where all the entries below a particular row,
say r, are zero. Suppose at this stage we have obtained a matrix C. Then C has the following

form:

1. THE FIRST NON-ZERO ENTRY IN EACH ROW of C' is 1. These 1’s are the leading terms of C

and the columns containing these leading terms are the leading columns.
2. THE ENTRIES OF C' BELOW THE LEADING TERM ARE ALL ZERO.

h

Step 4: Now use the leading term in the *1 row to make all entries in the rth leading column equal

to zero.

th

Step 5: Next, use the leading term in the (r — 1)"* row to make all entries in the (r — l)th leading

column equal to zero and continue till we come to the first leading term or column.

The final matrix is the row-reduced echelon form of the matrix A.
Remark 2.4.10 Note that the row reduction involves only row operations and proceeds from LEFT TO

RIGHT. Hence, if A is a matrix consisting of first s columns of a matrix C, then the row reduced form

of A will be the first s columns of the row reduced form of C.

The proof of the following theorem is beyond the scope of this book and is omitted.
Theorem 2.4.11 The row reduced echelon form of a matrix is unique.

Exercise 2.4.12 1. Solve the following linear system.
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(@) z+y+z+w=0,z—y+z+w=0and —z+y+32z+3w=0.
(b) 4+ 2y+3z=1and z+ 3y + 2z =1.
(c)z4+y+z=3,z+y—z=1landx+y+72=6.
(d)z+y+2=3,z4+y—z=1andx+y+4z =6.

() z4+y+z=3,c+y—z2z=1,z+y+4z2=6andz+y—4z=—1.

2. Find the row-reduced echelon form of the following matrices.

-1 1 3 5 10 8 6 4
L 1 3 5 7 ) 2 0 -2 -4
9 11 13 15|’ -6 —8 —10 -—12
-3 —1 13 -2 -4 -6 -8

2.4.2 Elementary Matrices

Definition 2.4.13 A square matrix E of order n is called an elementary matrix if it is obtained by
applying exactly one elementary row operation to the identity matrix, I,.

Remark 2.4.14 There are three types of elementary matrices.
1. E;j, which is obtained by the application of the elementary row operation R;; to the identity
1 ifk={Candl+#1,j
matrix, I,. Thus, the (k,é)th entry of E;j is (Eij) ey = 1 if (k,0) = (i,5) or (k,£) = (j,i) -
0 otherwise
2. Ey(c), which is obtained by the application of the elementary row operation Ry(c) to the identity
1 ifi=jandi#k
matrix, I,,. The (i,j)tb entry of Ex(c) is (Ex(c))uj) = c ifi=j=k
0 otherwise
3. E;j(c), which is obtained by the application of the elementary row operation R;;(c) to the identity
1 ifk=¢
matrix, I,. The (k,f)th entry of E;j(c) is (Eij) ke § ¢ if (k,€) = (i,7) -
0 otherwise

In particular,

1 0 c 0 0 1 0 0
E23: 0 0 1 ,El(C): 01 0 , and E23(C): 01 ¢
0 1 0 0 1 0 0 1
2 30
Example 2.4.15 l. LetA=1(2 0 3 4|.Then
4 5 6
1 2 3 0 1 2 30 1 00
2 0 3 4 R—gg> 3 4 5 6|=10 0 1|A=FE3A.
3 4 5 6 2 0 3 4 01 0

That is, interchanging the two rows of the matrix A is same as multiplying on the left by the corre-
sponding elementary matrix. In other words, we see that the left multiplication of elementary matrices

to a matrix results in elementary row operations.



30 CHAPTER 2. LINEAR SYSTEM OF EQUATIONS

2. Consider the augmented matrix [4 b] = . Then the result of the steps given below is

—= N O
_ O =
—_ W =
w ot N

same as the matrix product

E3(—1)E12(—1)E3(1/3) E32(2) Ea3 E21 (—2) E13[A b).

01 1 2 . 1 3 1 1 1 3 . 1 1
2 0 3 5 Rais 2 5| Roi(—2) [0 —2 1 —1| R |0 1 1 2
11 1 3 01 1 2 0 1 1 2 0 -2 1 -1
1 1 1 3] 1 1 1 3 10 0 1
R32(2 0 1 1 2|Rs3(1/3)[0 1 1 2| Ri2(-1)|0 1 1 2
0 0 3 3] 00 1 1 00 1 1
(1 0 0 1
Ras(—1 0 1 0 1
0 0 1 1]

Now, consider an m X n matrix A and an elementary matrix E of order n. Then multiplying by F
on the right to A corresponds to applying column transformation on the matrix A. Therefore, for each

elementary matrix, there is a corresponding column transformation. We summarize:
Definition 2.4.16 The column transformations obtained by right multiplication of elementary matrices are

called elementary column operations.

and consider the elementary column operation f which interchanges

[132] [100]

the second and the third column of A. Then f(A) = {2 3 OJ =A {O 0 1J = AFE>»3.

1 2
Example 2.4.17 Let A= |2 0
3 4

ot W W

3 5 4 0 1 0

Exercise 2.4.18 1. Let e be an elementary row operation and let E = e(I) be the corresponding ele-
mentary matrix. That is, E is the matrix obtained from I by applying the elementary row operation e.
Show that e(A) = EA.

2. Show that the Gauss elimination method is same as multiplying by a series of elementary matrices on
the left to the augmented matrix.

Does the Gauss-Jordan method also corresponds to multiplying by elementary matrices on the left?

Give reasons.

3. Let A and B be two m X n matrices. Then prove that the two matrices A, B are row-equivalent if and
only if B = PA, where P is product of elementary matrices. When is this P unique?

2.5 Rank of a Matrix

In previous sections, we solved linear systems using Gauss elimination method or the Gauss-Jordan

method. In the examples considered, we have encountered three possibilities, namely
1. existence of a unique solution,

2. existence of an infinite number of solutions, and
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3. no solution.

Based on the above possibilities, we have the following definition.

Definition 2.5.1 (Consistent, Inconsistent) A linear system is called CONSISTENT if it admits a solution
and is called INCONSISTENT if it admits no solution.

The question arises, as to whether there are conditions under which the linear system Ax = b is
consistent. The answer to this question is in the affirmative. To proceed further, we need a few definitions
and remarks.

Recall that the row reduced echelon form of a matrix is unique and therefore, the number of non-zero
rows is a unique number. Also, note that the number of non-zero rows in either the row reduced form

or the row reduced echelon form of a matrix are same.

Definition 2.5.2 (Row rank of a Matrix) The number of non-zero rows in the row reduced form of a
matrix is called the row-rank of the matrix.

By the very definition, it is clear that row-equivalent matrices have the same row-rank. For a matrix A,
we write ‘row-rank (A)’ to denote the row-rank of A.

1 2 1
Example 2.5.3 1. Determine the row-rank of A= |2 3 1
1 1 2
Solution: To determine the row-rank of A, we proceed as follows.
1 2 1 1 2 1
(@) |2 3 1| Ru(=2),Rs1(-1) |0 —1 —1
11 2 0 -1 1
1 2 1 1 2 1
(b) [0 -1 -1 Rg(—l),Rga(ﬁ 01 1
0 -1 1 0 0 2
1 2 1 10 -1
() [0 1 1|Rs(1/2),Ria(=2)]0 1 1
0 0 2 0 0 1
1 0 -1 1 0 0
(d |0 1 1 R23(—1),R13(1; 01 0
0 0 1 00 1

The last matrix in Step 1d is the row reduced form of A which has 3 non-zero rows. Thus, row-rank(A) = 3.
This result can also be easily deduced from the last matrix in Step 1b.

1 2 1
2. Determine the row-rank of A= |2 3 1
1 1 0
Solution: Here we have
(1 2 1 1 2 1
(@) |2 3 1| Ru(=2),Rs1(—=1) |0 -1 -1
1 10 0 -1 -1
(1 2 1 1 2 1
(b) |0 —1 -1 Rg(—l),Rga(ﬂ 01 1
0 -1 -1 0 0 O
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From the last matrix in Step 2b, we deduce row-rank(A) = 2.

Remark 2.5.4 Let Ax = b be a linear system with m equations and n unknowns. Then the row-reduced

echelon form of A agrees with the first n columns of [A b], and hence
row-rank(A) < row-rank([A b]).

The reader is advised to supply a proof.

Remark 2.5.5 Consider a matrix A. After application of a finite number of elementary column oper-
ations (see Definition 2.4.16) to the matrix A, we can have a matrix, say B, which has the following

properties:
1. The first nonzero entry in each column is 1.
2. A column containing only 0’s comes after all columns with at least one non-zero entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in successive

columns.

Therefore, we can define column-rank of A as the number of non-zero columns in B. It will be
proved later that

row-rank(A) = column-rank(A).

Thus we are led to the following definition.

Definition 2.5.6 The number of non-zero rows in the row reduced form of a matrix A is called the rank of
A, denoted rank (A).

Theorem 2.5.7 Let A be a matrix of rank 7. Then there exist elementary matrices E1, Es,..., FEs and
Fy, Fy, ..., Fp such that

I, 0

0 0

Proor. Let C be the row reduced echelon matrix obtained by applying elementary row operations to

E\Ey...E, AR, Fp=

the given matrix A. As rank(A) = r, the matrix C' will have the first r rows as the non-zero rows. So by
Remark 2.4.5, C will have r leading columns, say i1, 9, ...,%.. Note that, for 1 < s < r, the igh column

th

will have 1 in the s** row and zero elsewhere.

We now apply column operations to the matrix C. Let D be the matrix obtained from C by succes-

th ;th

sively interchanging the s** and i column of C for 1 < s < r. Then the matrix D can be written in the

T

form , where B is a matrix of appropriate size. As the (1, 1) block of D is an identity matrix,

the block (1,2) can be made the zero matrix by application of column operations to D. This gives the

required result. O
Exercise 2.5.8 1. Determine the ranks of the coefficient and the augmented matrices that appear in Part
1 and Part 2 of Exercise 2.4.12.
2. For any matrix A, prove that rank(A) = rank(A?).

3. Let A be an n x n matrix with rank(A) = n. Then prove that A is row-equivalent to I,.
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2.6 Existence of Solution of Ax =b

We try to understand the properties of the set of solutions of a linear system through an example, using
the Gauss-Jordan method. Based on this observation, we arrive at the existence and uniqueness results

for the linear system Ax = b. This example is more or less a motivation.

2.6.1 Example

Consider a linear system Ax = b which after the application of the Gauss-Jordan method reduces to a
matrix [C' d] with

102 -100 2 8
011 3 00 5 1
ca-[0 00 0 1o 12
000 0 01 1 4
000 0 00 0 0
000 0 00 0 O

For this particular matrix [C' d], we want to see the set of solutions. We start with some observations.

Observations:

1. The number of non-zero rows in C' is 4. This number is also equal to the number of non-zero rows
in [C d].

2. The first non-zero entry in the non-zero rows appear in columns 1,2,5 and 6.

3. Thus, the respective variables =1, 2, x5 and xg are the basic variables.

4. The remaining variables, x3, x4 and z; are free variables.

5. We assign arbitrary constants k1, ke and ks to the free variables x3, x4 and z7, respectively.

Hence, we have the set of solutions as

- '8 — 2k + ky — 2ks]

To 1—ky —3ks — 5k3

T3 k1

Ty| = k2

s 2+ ks

Te 4 — k3

Lz7 | L ks i
8] = (17 =)
1 -1 -3 -5
0 1 0 0

= Ol +k1 | 0| +ka| 1 |+Ek| 0],

2 0 0 1
4 0 0 -1
0] L0 L0 | 1]
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where k1, ks and ks are arbitrary.

8 -2 1 -2
1 -1 -3 -5
0 1 0 0
Let ug= (0|, uy=|0|,us=|1]andugs= |0
2 0 0 1
4 0 0 -1
10] L 0 0 1

Then it can easily be verified that éuo — d, and for 1 S_i <3, Cu; =0.
A similar idea is used in the proof of the next theorem and is omitted. The interested readers can
read the proof in Appendix 14.1.

2.6.2 Main Theorem

Theorem 2.6.1 [Existence and Non-existence] Consider a linear system Ax = b, where A is a m X n matrix,
and x, b are vectors with orders nx 1, and m x 1, respectively. Suppose rank (A) = r and rank([A b]) = r,.
Then exactly one of the following statement holds:

1. if r, =r < n, the set of solutions of the linear system is an infinite set and has the form
{wp+ k1ug + koug + -+ kp—ptyy_y : k,eR 1 <i<n-—r},
where ug, uy, ..., u,_, are n X 1 vectors satisfying Aug = b and Au; =0for1 <i<n-—r.

2. if r, = r = n, the solution set of the linear system has a unique n x 1 vector x( satisfying Axg = b.

3. If r < rg, the linear system has no solution.
Remark 2.6.2 Let A be an m X n matrix and consider the linear system Ax = b. Then by Theorem
2.6.1, we see that the linear system Ax = b is consistent if and only if

rank (A) = rank([A b]).
The following corollary of Theorem 2.6.1 is a very important result about the homogeneous linear

system Ax = 0.

Corollary 2.6.3 Let A be an m xn matrix. Then the homogeneous system Ax = 0 has a non-trivial solution
if and only if rank(A) < n.

PROOF. Suppose the system Ax = 0 has a non-trivial solution, xg. That is, Axg = 0 and xg # 0. Under

this assumption, we need to show that rank(A) < n. On the contrary, assume that rank(A) = n. So,
n = rank(A) = rank([4 0]) = r,.

Also A0 = 0 implies that 0 is a solution of the linear system Ax = 0. Hence, by the uniqueness of the
solution under the condition r = r, = n (see Theorem 2.6.1), we get xo = 0. A contradiction to the fact
that xo was a given non-trivial solution.

Now, let us assume that rank(A) < n. Then
rq =rank([A 0]) = rank(A) < n.

So, by Theorem 2.6.1, the solution set of the linear system Ax = 0 has infinite number of vectors x
satisfying Ax = 0. From this infinite set, we can choose any vector x¢ that is different from 0. Thus, we
have a solution xg # 0. That is, we have obtained a non-trivial solution xj. O

We now state another important result whose proof is immediate from Theorem 2.6.1 and Corollary
2.6.3.
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Proposition 2.6.4 Consider the linear system Ax = b. Then the two statements given below cannot hold
together.

1. The system Ax = b has a unique solution for every b.

2. The system Ax = 0 has a non-trivial solution.

Remark 2.6.5 1. Suppose x1,Xs are two solutions of Ax = 0. Then ki1xy + koXs Is also a solution
of Ax = 0 for any ki, ks € R.

2. If u,v are two solutions of Ax = b then u — v is a solution of the system Ax = 0. That is,
u — v = xy, for some solution xp, of Ax = 0. That is, any two solutions of Ax = b differ by a
solution of the associated homogeneous system Ax = 0.

In conclusion, for b # 0, the set of solutions of the system Ax = b is of the form, {x¢+ xy}; where

Xq is a particular solution of Ax = b and xj is a solution Ax = 0.

2.6.3 Exercises

Exercise 2.6.6 1. For what values of ¢ and k-the following systems have i) no solution, i) a unique
solution and i) infinite number of solutions.

a

b

Yrx+y+z2z=3, +2y+cz=4, 2x+3y+2cz=k.
)

r4+y+z=3, x+y+2cz2=7 v+ 2y+3cz=k.

(
(
(c) x4+y+22=3, c+2y+cz=5, x+2y+4z=k.
(d) kx+y+z=1,z+ky+z=1 c+y+kz=1.
(

e) x+2y—2=1,2x4+3y+kz=3, x+ky+3z=2.
(f)e—2y=1,xa—y+kz=1, ky+ 42z =6.

2. Find the condition on a, b, ¢ so that the linear system
r+2y—3z=a,2x+6y—1lz=b x —2y+72z=c
is consistent.

3. Let A be an n x n matrix. If the system A?x = 0 has a non trivial solution then show that Ax = 0
also has a non trivial solution.

2.7 Invertible Matrices

2.7.1 Inverse of a Matrix

Definition 2.7.1 (Inverse of a Matrix) Let A be a square matrix of order n.
1. A square matrix B is said to be a LEFT INVERSE of A if BA = 1I,.
2. A square matrix C is called a RIGHT INVERSE of A, if AC = I,,.

3. A matrix A is said to be INVERTIBLE (or is said to have an INVERSE) if there exists a matrix B such
that AB = BA = 1,.

Lemma 2.7.2 Let A be an n X n matrix. Suppose that there exist n x n matrices B and C such that
AB =1, and CA=1,, then B=C.
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PROOF. Note that
C=CIl,=C(AB)=(CA)B=1,B=B.

Remark 2.7.3 1. From the above lemma, we observe that if a matrix A is invertible, then the inverse

is unique.

2. As the inverse of a matrix A is unique, we denote it by A~!. That is, AA~' = A"1A=1.

Theorem 2.7.4 Let A and B be two matrices with inverses A~! and B~!, respectively. Then
1. (A H)= = A
2. (AB)"t=pB7tA"%
3. prove that (A%)~t = (A1)t

PrOOF. Proof of Part 1.
By definition AA~! = A='A = I. Hence, if we denote A~! by B, then we get AB = BA = I. This again
by definition, implies B~ = A, or equivalently (A1)t = A.
Proof of Part 2.
Verify that (AB)(B~1A™!) =1 = (B~1A7!)(AB). Hence, the result follows by definition.
Proof of Part 3.
We know AA~! = A1 A = I. Taking transpose, we get

(AAT = (AP A) = T' = (A7) AL = AHA™Y = 1.

Hence, by definition (A%)~! = (4A~1)%. =

Exercise 2.7.5 1. If A is a symmetric matrix, is the matrix A~! symmetric?

2. Show that every elementary matrix is invertible. Is the inverse of an elementary matrix, also an ele-

mentary matrix?

3. Let Ay, As, ..., A, be invertible matrices. Prove that the product A;As--- A, is also an invertible
matrix.

4. If P and @ are invertible matrices and PAQ is defined then show that rank (PAQ) = rank (A).

5. Find matrices P and @ which are product of elementary matrices such that B = PAQ where A =

2 4
8 and B = Lo O.
1 3 2 0 1 0

6. Let A and B be two matrices. Show that

(a) if A+ B is defined, then rank(A + B) < rank(A) + rank(B),
(b) if AB is defined, then rank(AB) < rank(A) and rank(AB) < rank(B).

7. Let A be any matrix of rank r. Then show that there exists invertible matrices B;, C; such that

R R S1 0 A O I, 0
BiA = |11 02 1 1
3

that the matrix A1 is an r X r invertible matrix.

, ACy = , B ACH = , and B3ACs3 = . Also, prove
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8. Let A be an m x n matrix of rank r. Then A can be written as A = BC, where both B and C have
rank 7 and B is a matrix of size m x r and C' is a matrix of size r X n.

9. Let A and B be two matrices such that AB is defined and rank (4) = rank (AB). Then show that
A = ABX for some matrix X. Similarly, if BA is defined and rank (A) = rank (BA), then A=Y BA

. A1 O
for some matrix Y. [Hint: Choose non-singular matrices P,Q and R such that PAQ = 01 0 and
cC o C7A 0
P(AB)R = o| - Define X =R | ! o Q'

10. Let A = [a;;] be an invertible matrix and let B = [p"~7a;;] for some nonzero real number p. Find the

inverse of B.

11. If matrices B and C' are invertible and the involved partitioned products are defined, then show that

0 c1t
B! —B-lAC-!

A B
c 0

12. Suppose A is the inverse of a matrix B. Partition A and B as follows:

A A
Aoy Ag

Bi1 Bia
By1 B

A: =

)

If Aqq is invertible and P = Ay — Agl(Al_llAlg), then show that
B = Af' + (A A1) P (An AL, Boy = —P 7' (AnAL), Bia = —(Aj'Ain) P,

and Byy = P

2.7.2 Equivalent conditions for Invertibility

Definition 2.7.6 A square matrix A or order n is said to be of full rank if rank (4) = n.

Theorem 2.7.7 For a square matrix A of order n, the following statements are equivalent.
1. Ais invertible.
2. A'is of full rank.
3. A is row-equivalent to the identity matrix.
4. A'is a product of elementary matrices.

ProoF. 1 =2
Let if possible rank(A) = r < n. Then there exists an invertible matrix P (a product of elementary

By B C
matrices) such that PA = ! > , where Bj is an 7 X7 matrix. Since A is invertible, let A~! = C’l ,
2
where C is an r x n matrix. Then
B, B B B
P =PI, =P(AA™") = (PA)A = |} 72 G| _ |Bi6i+ BoCh (2.7.1)
0 0] |Cs 0

Thus the matrix P has n — r rows as zero rows. Hence, P cannot be invertible. A contradiction to P
being a product of invertible matrices. Thus, A is of full rank.
2=3
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Suppose A is of full rank. This implies, the row reduced echelon form of A has all non-zero rows.
But A has as many columns as rows and therefore, the last row of the row reduced echelon form of A
will be (0,0,...,0,1). Hence, the row reduced echelon form of A is the identity matrix.

3=4

Since A is row-equivalent to the identity matrix there exist elementary matrices F1, Fs, ..., Ej such
that A = E1FEs --- ExI,. That is, A is product of elementary matrices.

41 =1

Suppose A = F1 Es - - - Ey; where the E;’s are elementary matrices. We know that elementary matrices

are invertible and product of invertible matrices is also invertible, we get the required result. U

The ideas of Theorem 2.7.7 will be used in the next subsection to find the inverse of an invertible
matrix. The idea used in the proof of the first part also gives the following important Theorem. We

repeat the proof for the sake of clarity.

Theorem 2.7.8 Let A be a square matrix of order n.
1. Suppose there exists a matrix B such that AB = I,,. Then A~ exists.
2. Suppose there exists a matrix C such that CA = I,,. Then A~! exists.

PROOF. Suppose that AB = I,,. We will prove that the matrix A is of full rank. That is, rank (A4) = n.

Let if possible, rank(A) = r < n. Then there exists an invertible matrix P (a product of elementary

Cy Cy

matrices) such that PA = [ 0 o ] . Let B = , where B; is an 7 x n matrix. Then

2

Cy Cy
0O O

By
By

C1B1 + CyBy
0

P =PI, = P(AB) = (PA)B = = (2.7.2)

Thus the matrix P has n — r rows as zero rows. So, P cannot be invertible. A contradiction to P being
a product of invertible matrices. Thus, rank (A) = n. That is, A is of full rank. Hence, using Theorem
2.7.7, A is an invertible matrix. That is, BA = I,, as well.

Using the first part, it is clear that the matrix C in the second part, is invertible. Hence
AC =1, =CA.

Thus, A is invertible as well. O

Remark 2.7.9 This theorem implies the following: “if we want to show that a square matrix A of order

n Is invertible, it is enough to show the existence of
1. either a matrix B such that AB = I,

2. or a matrix C such that CA = I,,.

Theorem 2.7.10 The following statements are equivalent for a square matrix A of order n.
1. Ais invertible.
2. Ax = 0 has only the trivial solution x = 0.

3. Ax = b has a solution x for every b.
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ProoF. 1 =2

Since A is invertible, by Theorem 2.7.7 A is of full rank. That is, for the linear system Ax = 0, the
number of unknowns is equal to the rank of the matrix A. Hence, by Theorem 2.6.1 the system Ax = 0
has a unique solution x = 0.

2=1

Let if possible A be non-invertible. Then by Theorem 2.7.7, the matrix A is not of full rank. Thus
by Corollary 2.6.3, the linear system Ax = 0 has infinite number of solutions. This contradicts the
assumption that Ax = 0 has only the trivial solution x = 0.

1=3

Since A is invertible, for every b, the system Ax = b has a unique solution x = A~ 'b.

3=1

For 1 <i < n, define e; = (0,...,0, 1 ,0,...,0)%, and consider the linear system Ax = e;.
;th position
By assumption, this system has a solution x; for each i, 1 < ¢ < n. Define a matrix B = [x1,Xa, ..., Xp]-

That is, the it column of B is the solution of the system Ax = e;. Then
AB = A[x1,X2 ..., Xy] = [AX1, AXo ..., AXy] = [€1,€2...,e,] = Iy

Therefore, by Theorem 2.7.8, the matrix A is invertible. O

Exercise 2.7.11 1. Show that a triangular matrix A is invertible if and only if each diagonal entry of A

is non-zero.

2. Let A be a 1 x 2 matrix and B be a 2 x 1 matrix having positive entries. Which of BA or AB is

invertible? Give reasons.

3. Let A be an n x m matrix and B be an m x n matrix. Prove that the matrix I — BA is invertible if

and only if the matrix I — AB is invertible.

2.7.3 Inverse and Gauss-Jordan Method

We first give a consequence of Theorem 2.7.7 and then use it to find the inverse of an invertible matrix.

Corollary 2.7.12 Let A be an invertible n x n matrix. Suppose that a sequence of elementary row-operations
reduces A to the identity matrix. Then the same sequence of elementary row-operations when applied to the

identity matrix yields A~".

PROOF. Let A be a square matrix of order n. Also, let E1, Es, ..., E; be a sequence of elementary row
operations such that E1Ey--- E A = I,,. Then E1Es--- EpI, = A~!. This implies A~ = E1Ey - - E},.
U

Summary: Let A be an n x n matrix. Apply the Gauss-Jordan method to the matrix [A I,].
Suppose the row reduced echelon form of the matrix [A I,]is [B C]. If B = I,,, then A1 = C or else

A is not invertible.

2 11
Example 2.7.13 Find the inverse of the matrix [1 2 1| using Gauss-Jordan method.
1 1 2
21 1100
Solution: Consider the matrix |1 2 1 0 1 0| . A sequence of steps in the Gauss-Jordan method
11 2 0 0 1

are:
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2 1 100 144 1 00
1|1 1 01 0|R(1/2){1 2 1 0 1 0
1 2 0 0 1 112 0 01
(1 L L L oo 1 L L 1 9o
2 2 2 Roi(—1 g % 21
2201 2 1.0 10 s o 2 1 -1
31\ 1 3 1
1 1 2 0 0 1 o3 3 -3o0
M 1 1 1 1 1 1
1L 11 00 1L 11 00
3.0 2 1 -3 1 0| Ra(2/3)|0 1 & —3 20
1 3 1 1 3 1
03 5 —3 01 03 53 -3 0
M 1 1 1 1 1 1
2 2 3 00 L' 3 2 2 00
1 1 2 1 1 2
1 3 1 1 1
03 5 —3 01 00 3 -3 —3 1
M 1 1 1 1 1 1 ]
2 2 2 00 L 3 2 32 00
1 1 2 1 1 2
5.0 1 & -1 2 o|R(3/4)fo 1 & -1 2 o
4 1 1 1 1 3
00 35 -3 —3 1 0 1 -3 -3 1l
M L L 1 0 0 1 L o 35 1 =37
S S T Ras(—1/3] : Sy 8
6. [0 1 3 F 2 0 1 o1 0 5 2 =
oo 1o o Yo 0 22 g
M 1 o 3 L =3 1 00 3 =L =t
2 8 8 8 4 4 4
7.0 1 o F 2 ng(—1/23 o1 0 = 2 =
o o1 o 3 001 2 i

3/4  —1/4 —1/4
8. Thus, the inverse of the given matrix is |-1/4 3/4 —1/4
—1/4 —1/4 3/4

Exercise 2.7.14 Find the inverse of the following matrices using Gauss-Jordan method.

123 1 3 3 2 -1 3
() |1 3 2|, @) |2 3 2|, (@) |-1 3 =2
2 4 7 2 4 7 2 4 1

2.8 Determinant

Notation: For an n x n matrix A, by A(e|B), we mean the submatrix B of A, which is obtained by

th Bth column.

deleting the a"* row and

_ Then A(1]2) = E i

NN W

1 2
Example 2.8.1 Consider a matrix A = |1 3
2 4
A(1,2]1,3) = [4].
Definition 2.8.2 (Determinant of a Square Matrix) Let A be a square matrix of order n. With A, we
associate inductively (on n) a number, called the determinant of A, written det(A) (or |A]) by

if A=[a] (n=1),

a
det(A) = > (_1)1+ja1j det (A(l|j)), otherwise.
Jj=1
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Definition 2.8.3 (Minor, Cofactor of a Matrix) The number det (A(i|j)) is called the (z’,j)th minor of
A. We write A;; = det (A(i[5)). The (i, )t cofactor of A, denoted Cj;, is the number (—1)i+J A,;.

ailp a2

Example 2.8.4 1. Let A= . Then, det(A) = |A| = a11A11 — a12A12 = 11022 — Q12021.

a1 a2

For example, for A =

ﬂ det(A) = [A] =1—-2-2= 3.

ailr a2 ais
2. Let A= a21 Q22 Q23 .Then,

aszy asz as3

det(A) = |A|=a11A11 —a2A12 +a13413
az a3 as1 a3 as1 a2
= a1 — Q1o + ais
asy  as3 asi ass asi  asz

= a11(a22a33 — a23a32) — a12(a21as3 — asi1a23) + aiz(aziasz — asiaz?)

= (11022033 — (11023032 — 012021033 + Q12023031 + A13021032 — 13022031 (2-8-1)

1 2 3
For example, if A= [2 3 1| then
1 2 2
31 2 1 2 3
det(A) = |A| =1- -2 +3- =4-2(3)+3(1)=1.
2 2 1 2 1 2

Exercise 2.8.5 1. Find the determinant of the following matrices.

1 2 7 8 3 5 2 1 )
04 3 2 0 2 0 Loaa
i) , i) , i) |1 b b?
00 2 3 6 -7 1 0 )

1 ¢ ¢
0005 2 0 3 0

2. Show that the determinant of a triangular matrix is the product of its diagonal entries.

Definition 2.8.6 A matrix A is said to be a singular matrix if det(A) = 0. It is called non-singular if
det(A) # 0.

The proof of the next theorem is omitted. The interested reader is advised to go through Appendix
14.3.

Theorem 2.8.7 Let A be an n X n matrix. Then
1. if B is obtained from A by interchanging two rows, then det(B) = — det(A),
2. if B is obtained from A by multiplying a row by ¢ then det(B) = cdet(A),
3. if all the elements of one row or column are 0 then det(A) = 0,

4. if B is obtained from A by replacing the jth row by itself plus & times the ith row, where i # j then
det(B) = det(A),

5. if A is a square matrix having two rows equal then det(A) = 0.
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Remark 2.8.8 1. Many authors define the determinant using “Permutations.” It turns out that THE
WAY WE HAVE DEFINED DETERMINANT is usually called the expansion of the determinant along
the first row.

2. Part 1 of Lemma 2.8.7 implies that “one can also calculate the determinant by expanding along
any row.” Hence, for an n x n matrix A, for every k, 1 < k < n, one also has

n

det(A) =Y (—1)*ay,; det (A(k[5)).

Jj=1

Remark 2.8.9 1. Let u! = (u1,uz2) and v! = (v1,v2) be two vectors in R?. Then consider the par-
allelogram, PQRS, formed by the vertices {P = (0,0)!,Q =u,S =v,R=u+v}. We

Uy v
det(l ! 1])‘ = |urve — ugv1|.
Uz V2

Recall that the dot product, u e v = u1v1 + u2v2, and /Jueu = 4/ (u% + ug), is the length of the
vector u. We denote the length by ¢(u). With the above notation, if 6 is the angle between the

Claim: Area (PQRS) =

vectors u and v, then
uev

COS(G) = M

Which tells us,

Area(PQRS) = Z(u)f(v)sin(@)zf(u)f(v)\/l—(%)

= V()2 +L(v)? — (uev)? = /(urv2 — uzv1)?

= |’LL11)2 —’LL21}1|.

Hence, the claim holds. That is, in R?, the determinant is & times the area of the parallelogram.

2. Let u = (u1,u2,u3),v = (v1,v2,v3) and w = (w1, ws,w3) be three elements of R3. Recall that the
cross product of two vectors in R? is,

u X v = (ugu3 — uzva, Ugvy — U1U3, U1Vs — UgV1).
Note here that if A = [ul,vt, wt], then

Uy v w1

det(A) =|us vy wy|=ue(viw)=ve(wxu =we(uxv).

uz Vs W3
Let P be the parallelopiped formed with (0,0,0) as a vertex and the vectors u,v,w as adjacent
vertices. Then observe that u X v is a vector perpendicular to the plane that contains the paral-
lelogram formed by the vectors u and v. So, to compute the volume of the parallelopiped P, we

need to look at cos(f), where 0 is the angle between the vector w and the normal vector to the

parallelogram formed by u and v. So,
volume (P) = |w e (u X v)|.
Hence, | det(A)| = volume (P).

3. Let uj,ug,...,u, € R"! and let A = [uj,us,...,u,] be an n x n matrix. Then the following
properties of det(A) also hold for the volume of an n-dimensional parallelopiped formed with

0 € R™*! as one vertex and the vectors uy,ug, ..., u, as adjacent vertices:
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(a) Ifu; = (1,0,...,0)", us = (0,1,0,...,0),..., and u, = (0,...,0,1)%, then det(A) = 1. Also,

volume of a unit n-dimensional cube is 1.

(b) If we replace the vector u; by au;, for some o € R, then the determinant of the new matrix
is o - det(A). This is also true for the volume, as the original volume gets multiplied by c.

(c) If uy = wu; for some i, 2 < i < n, then the vectors u,us,...,u, will give rise to an (n — 1)-
dimensional parallelopiped. So, this parallelopiped lies on an (n — 1)-dimensional hyperplane.
Thus, its n-dimensional volume will be zero. Also, | det(A)| = |0] = 0.

In general, for any n x n matrix A, it can be proved that |det(A)| is indeed equal to the volume

of the n-dimensional parallelepiped. The actual proof is beyond the scope of this book.

2.8.1 Adjoint of a Matrix

Recall that for a square matrix A, the notations A4;; and C;; = (—1)""7 A;; were respectively used to
denote the (i,j)th minor and the (i,j)th cofactor of A.

Definition 2.8.10 (Adjoint of a Matrix) Let A be an n x n matrix. The matrix B = [b;;] with b;; = C;,
for 1 <1i,j <n is called the Adjoint of A, denoted Adj(A).

1 2 3 4 2 -7
Example 2.8.11 Let A= |2 3 1|.Then Adj(A)=|-3 -1 5 |;
1 2 2 1 0 -1

as Cll = (—1)1+1A11 = 4,012 = (—1)1+2A12 = —3, 013 = (—1)1+3A13 = 1, and so on.

Theorem 2.8.12 Let A be an n x n matrix. Then

n

1. for1l < ) < n, Z Qg Cij = Z aij(—l)i“ Aij = det(A),
j=1

Jj=1
n

2. fori 75 f, Z Qg ng = Z aij(—l)“j Agj = O, and
j=1

Jj=1

3. A(Adj(A)) = det(A)L,. Thus,

det(A) #0= A" = Adj(A). (2.8.2)

det(A)
PROOF. Let B = [b;;] be a square matrix with
o the /1 row of B as the ith row of A,

e the other rows of B are the same as that of A.

By the construction of B, two rows (ith and Zth) are equal. By Part 5 of Lemma 2.8.7, det(B) = 0. By
construction again, det (A(€|j)) = det (B(€|j)) for 1 < j <n. Thus, by Remark 2.8.8, we have

n

(—1)" by det (B(£]j)) = > (1) ay; det(B(¢]))

Jj=1

hE

0=det(B) =

<.
Il
-

n

(—1)€+jaij det(A(éU)) = Z aijC[j.
Jj=1

[
hE

<.
Il
-
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Now,
(A(Adj(A))> = Zaik (Adj(A))kj = Zaikcjk
ij k=1 k=1
B 0 ifi#j
B det(A) ifi=j
Thus, A(Adj(A)) = det(A)I,. Since, det(A) # 0, AmAdj(A) = I,,. Therefore, A has a right

inverse. Hence, by Theorem 2.7.8 A has an inverse and

A = L g,

det(A)
O
1 -1
Example 2.8.13 Let A= |0 1 1. Then

1 2 1

-1 1 -1

Adj(A)=| 1 1 -1
-1 -3 1

/2 —1/2 1/2
and det(A) = —2. By Theorem 2.8.12.3, A~ = | -1/2 —1/2 1/2
12 3/2 -1/2

The next corollary is an easy consequence of Theorem 2.8.12 (recall Theorem 2.7.8).

Corollary 2.8.14 If A is a non-singular matrix, then

_ n det(4) ifj=k
Adj(A))A = det(A)I, d ij Cik =
(Adi(A) A = det(A)1 and 3y € =4 YL

Theorem 2.8.15 Let A and B be square matrices of order n. Then det(AB) = det(A) det(B).

PRrROOF. Step 1. Let det(A4) # 0.

This means, A is invertible. Therefore, either A is an elementary matrix or is a product of elementary
matrices (see Theorem 2.7.7). So, let E4, Es, ..., Ej be elementary matrices such that A = F1FEy - - - Ej.
Then, by using Parts 1, 2 and 4 of Lemma 2.8.7 repeatedly, we get

det(AB) det(ElEQ cee EkB) = det(El) det(E2 cee EkB)
= det(El) det(EQ) det(E3 s EkB)

= det(ElEg) det(E3 s EkB)

= det(ElEQ c Ek)det(B)
= det(A)det(B).

Thus, we get the required result in case A is non-singular.
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Step 2. Suppose det(A) = 0.

C
Then A is not invertible. Hence, there exists an invertible matrix P such that PA = C, where C = !
So, A = P~1C, and therefore
—1 —1 —1 ClB
det(AB) = det((P~"C)B) =det(P"*(CB))=det | P
C1B
= det(P7!)-det < ! ) as P~! is non-singular
= det(P)-0=0=0-det(B) = det(A4) det(B).
Thus, the proof of the theorem is complete. U
Corollary 2.8.16 Let A be a square matrix. Then A is non-singular if and only if A has an inverse.
1
PROOF. Suppose A is non-singular. Then det(A) # 0 and therefore, A=! = ———Adj(A). Thus, A

det(A)

has an inverse.
Suppose A has an inverse. Then there exists a matrix B such that AB = [ = BA. Taking determinant
of both sides, we get
det(A) det(B) = det(AB) = det(I) = 1.

This implies that det(A) # 0. Thus, A is non-singular. O

Theorem 2.8.17 Let A be a square matrix. Then det(A) = det(A?).

PROOF. If A is a non-singular Corollary 2.8.14 gives det(A4) = det(A?).

If A is singular, then det(4) = 0. Hence, by Corollary 2.8.16, A doesn’t have an inverse. There-
fore, A' also doesn’t have an inverse (for if A® has an inverse then A=1 = ((At)_l)t). Thus again by
Corollary 2.8.16, det(A?) = 0. Therefore, we again have det(A) = 0 = det(A?).

Hence, we have det(A) = det(A?). O

2.8.2 Cramer’s Rule

Recall the following:
e The linear system Ax = b has a unique solution for every b if and only if A~! exists.
e A has an inverse if and only if det(A4) # 0.

Thus, Ax = b has a unique solution FOR EVERY b if and only if det(A) # 0.

The following theorem gives a direct method of finding the solution of the linear system Ax = b
when det(A) # 0.

Theorem 2.8.18 (Cramer’s Rule) Let Ax = b be a linear system with n equations in n unknowns. If
det(A) # 0, then the unique solution to this system is

o det(Aj)
Y17 Qet(A)

forj=1,2,...,n,

where A; is the matrix obtained from A by replacing the jth column of A by the column vector b.
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PROOF. Since det(A) # 0, A™! =

Adj(A). Thus, the linear system Ax = b has the solution

de t(A)
1
X = MAdj(A)b. Hence, z;, the jth coordinate of x is given by
oo 0101 A b2 4+ bnCy det(A;)
T det(A) ~ det(A)
O
The theorem implies that
by a2 - ai
1 by az - az,
17 det(A) :
bn an2 e Gnn
and in general
air - aj—1 b a1 - ain
1 a2 G251 bo agj4+1 - G2n
77 Qet(A)
Q1pn Anj—1 bn Anj+1 e Gnn
for j=2,3,....n
1 2 3 1
Example 2.8.19 Suppose that A= |2 3 1| and b = [1|. Use Cramer’s rule to find a vector x such
1 2 2
that Ax =b
1 2 3
Solution: Check that det(A) = 1. Therefore 1 = |1 3 1| = —1,
1 2 2
1 1 3 1 2 1
ze=12 1 1|=1,andxz3=|2 3 1| =0.Thatis, x* =(-1,1,0).
1 1 2 1 2 1

2.9 Miscellaneous Exercises
Exercise 2.9.1 1. Let A be an orthogonal matrix. Show that det A = £1.

2. If A and B are two n X n non-singular matrices, are the matrices A + B and A — B non-singular?
Justify your answer.

3. For an n x n matrix A, prove that the following conditions are equivalent:

(a) A is singular (A~! doesn't exist).

(b) rank(A) # n.

(c) det(A) =0.

(d) A is not row-equivalent to I,,, the identity matrix of order n.

(e) Ax = 0 has a non-trivial solution for x.

(f) Ax = b doesn’t have a unique solution, i.e., it has no solutions or it has infinitely many solutions.
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10.

11.

12.

13.

14.
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2 0 6 0 4
5 3 2 2 7

.Llet A= 12 5 7 5 5|.We know that the numbers 20604, 53227, 25755,20927 and 78421 are
209 2 7
7 8 4 2 1

all divisible by 17. Does this imply 17 divides det(A)?
. Let A = [aij]nxn where a;; = 77", Show that det(A) = T[] (z; — ;). [The matrix A is usually
1<i<j<n

called the Van-dermonde matrix.|

. Let A = [a;;] with a;; = max{4, j} be an n x n matrix. Compute det A.
. Let A = [a;;] with a;; = 1/(i + j) be an n x n matrix. Show that A is invertible.

. Solve the following system of equations by Cramer’s rule.

Nret+yt+z—w=lLz+y—z4+w=2, 2x+y+z—w=7c+y+z+w=3.
Wer—y+z—w=1lLzx+y—z+w=2 2x+y—z—w=",x—y—z+w=23.

. Suppose A = [a;;] and B = [b;;] are two n x n matrices such that b;; = pi_jaij for 1 <i,j <n for

some non-zero real number p. Then compute det(B) in terms of det(A).

The position of an element a;; of a determinant is called even or odd according as i + j is even or odd.
Show that

(a) If all the entries in odd positions are multiplied with —1 then the value of the determinant doesn’t
change.

(b) If all entries in even positions are multiplied with —1 then the determinant

i. does not change if the matrix is of even order.

ii. is multiplied by —1 if the matrix is of odd order.

Let A be an n x n Hermitian matrix, that is, A* = A. Show that det A is a real number. [A is a matrix
with complex entries and A* = At

Let A be an n x n matrix. Then show that

A is invertible <= Adj(A) is invertible.
Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).

B
Let P = c D be a rectangular matrix with A a square matrix of order n and |A| # 0. Then show

that rank (P) =n if and only if D = CA~!B.
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Chapter 3

Finite Dimensional Vector Spaces

Consider the problem of finding the set of points of intersection of the two planes 2x +3y+z+u =0
and 3x +y+ 2z 4+u =0.
Let V be the set of points of intersection of the two planes. Then V has the following properties:

1.

2.

3.

The point (0,0,0,0) is an element of V.

For the points (—1,0,1,1) and (-5, 1, 7,0) which belong to V; the point (—6,1,8,1) = (—1,0,1,1)+
(-5,1,7,0) e V.

Let @ € R. Then the point a(—1,0,1,1) = (-, 0, a, «) also belongs to V.

Similarly, for an m x n real matrix A, consider the set V. of solutions of the homogeneous linear

system Ax = 0. This set satisfies the following properties:

1.

4.

5.

If Ax =0and Ay =0, then x,y € V. Then x+y € V as A(x+y) = Ax+ Ay = 0+ 0 = 0. Also,
X+y=y+x.

It is clear that if x,y,z € V then (x +y)+z=x+ (y + 2).
The vector 0 € V' as A0 = 0.
If Ax =0 then A(—x) = —Ax = 0. Hence, —x € V.

Let o € R and x € V. Then ax € V as A(ax) = aAx = 0.

Thus we are lead to the following.

3.1 Vector Spaces

3.1.1 Definition

Definition 3.1.1 (Vector Space) A vector space over F, denoted V (F), is a non-empty set, satisfying the

following axioms:

1.

VECTOR ADDITION: To every pair u,v € V there corresponds a unique element u@ v in V such that

(a) u® v =v @ u (Commutative law).
(b) (udv)dw=ud (vdw) (Associative law).
(c) There is a unique element 0 in V' (the zero vector) such that u@® 0 = u, for every u € V (called

the additive identity).

10
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(d) For every u € V there is a unique element —u € V such that u® (—u) = 0 (called the additive
inverse).

@ is called VECTOR ADDITION.

2. SCALAR MULTIPLICATION: For each u € V and a € F, there corresponds a unique element o ® u in
V' such that

(a) a- (BeOu)=(af)®uforevery o, €FanduecV.
(b) 1 ®u=u for every u € V, where 1 € R.

3. DISTRIBUTIVE LAWS: RELATING VECTOR ADDITION WITH SCALAR MULTIPLICATION
For any a, 8 € F and u, v € V, the following distributive laws hold:

(@ a0 uev)=(aou) & (@O V).
(b) (@+B)Ou=(aou) & (BoOu).

Note: the number 0 is the element of F whereas 0 is the zero vector.

Remark 3.1.2 The elements of F are called SCALARS, and that of V are called VECTORS. If F =R, the
vector space is called a REAL VECTOR SPACE. If F = C, the vector space is called a COMPLEX VECTOR
SPACE.

We may sometimes write V' for a vector space if F is understood from the context.

Some interesting consequences of Definition 3.1.1 is the following useful result. Intuitively, these
results seem to be obvious but for better understanding of the axioms it is desirable to go through the

proof.

Theorem 3.1.3 Let V' be a vector space over F. Then
1. u®v=nuimpliesv=0.
2. a®u =0 if and only if either u is the zero vector or a = 0.
3. (-1)©u=—uforeveryuecV.

PrOOF. Proof of Part 1.
For u € V, by Axiom 1d there exists —u € V' such that —u® u = 0.
Hence, u & v = u is equivalent to

—ud(uPv)=—ufu<= (—uPu)dv=0<=0pv=0<=v=0.

Proof of Part 2.
As 0 = 0 0, using the distributive law, we have

a®0=a0(0200)=(ac0) & (¢©0).
Thus, for any a € T, the first part implies & ® 0 = 0. In the same way,
0Ou=0+0cu=00u) ®(0Cu).
Hence, using the first part, one has 0 ® u = 0 for any u € V.
Now suppose « ® u = 0. If a = 0 then the proof is over. Therefore, let us assume « # 0 (note that
« is a real or complex number, hence — exists and
@

1 1
0=—00=-0(@ou=(—a)Ou=10u=u
« « «



3.1. VECTOR SPACES 51

as 1 ® u = u for every vector u € V.
Thus we have shown that if & # 0 and @« ® u = 0 then u = 0.
Proof of Part 3.
We have 0 = 0u = (1 + (—1))u = u+ (—1)u and hence (—1)u = —u. O

3.1.2 Examples

Example 3.1.4 1. The set R of real numbers, with the usual addition and multiplication (i.e., & = +
and ©® = ) forms a vector space over R.

2. Consider the set R? = {(z1,22) : 21,72 € R}. For 21, 72,91,y2 € R and o € R, define,

(z1,22) ® (y1,92) = (21 +y1,22 + y2) and @ © (z1,22) = (az1, azs).
Then R? is a real vector space.

3. Let R™ = {(aj,a2,...,a,) : a; € R;1 < i < n}, be the set of n-tuples of real numbers. For
u=(a,...,an), v=_(b1,...,b,) in V and a € R, we define

udv=_(a+by,...,a,+b,) and a©u=(aay,...,aa,)

(called component wise or coordinate wise operations). Then V is a real vector space with addition and
scalar multiplication defined as above. This vector space is denoted by R"™, called the real vector

space of n-tuples.

4. Let V = R™ (the set of positive real numbers). Thisis NOT A VECTOR SPACE under usual operations of
addition and scalar multiplication (why?). We now define a new vector addition and scalar multiplication
as

Vi®dveg=vy-vy and a®v =v®

for all vi,vo,v € RT and o € R. Then R™ is a real vector space with 1 as the additive identity.

5. Let V = R2. Define (21,72) ® (y1,2) = (v1 +y1 + 1,29 + 42 — 3), a® (71,22) = (ax1 + a —
1,azy — 3a+ 3) for (z1,72), (y1,92) € R? and o € R. Then it can be easily verified that the vector
(—1,3) is the additive identity and V' is indeed a real vector space.

Recall v/—1 is denoted <.
6. Consider the set C = {z + iy : z,y € R} of complex numbers.

(a) For &1 +iy1,x2 + iy2 € C and a € R, define,

(z1+iy1) ® (z2 +iy2) = (z14+22)+i(y1 +y2) and
a®(z1+iy) = (o) +i(ay).
Then C is a real vector space.

(b) For 21 +iy1, 22 + iy € C and a + 8 € C, define,

(x1 +iy1) @ (22 +iy2) = (21 +22) +i(y1 +y2) and
(a+iB) © (z1 +iy1) = (ax1 — By1) +i(ays + Br1).

Then C forms a complex vector space.
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7. Consider the set C" = {(21,22,...,25) : 2; € Cfor 1 <i <mn}. For (z1,...,2n), (w1,...,w,) € C"
and o € F, define,

(21,0 y2n) ® (W1,...,wy) = (21 +wi,...,2n +wy,) and

a®(z1,...,2n) = (@z1,...,az).

(a) If the set T is the set C of complex numbers, then C™ is a complex vector space having n-tuple

of complex numbers as its vectors.

(b) If the set F is the set R of real numbers, then C™ is a real vector space having n-tuple of complex

numbers as its vectors.

Remark 3.1.5 In Example 7a, the scalars are Complex numbers and hence i(1,0) = (3,0).
Whereas, in Example 7b, the scalars are Real Numbers and hence WE CANNOT WRITE i(1,0) =

(i,0).

8. Fix a positive integer n and let M, (R) denote the set of all n x n matrices with real entries. Then

M, (R) is a real vector space with vector addition and scalar multiplication defined by
A& B = [aij] @ [bij] = [as; + bijl, a®A= a0 lay] = [aay].

9. Fix a positive integer n. Consider the set, P, (R), of all polynomials of degree < n with coefficients
from R in the indeterminate z. Algebraically,

Pn(R) = {ag + a1z + agx® + - -+ apz" : a; € R,0 < i < n}.

Let f(x),g(x) € Pn(R). Then f(x) = ag + a1z + azx? + -+ + apz™ and g(x) = by + bz + box? +
-+« 4 bpx™ for some a;,b; € R, 0 < i < n. It can be verified that P,,(R) is a real vector space with the
addition and scalar multiplication defined by:

f@)@g(x) = (ao+bo)+ (a1 +b1)z+ -+ (an +by)z", and
a® flx) = aa+aaz+---+aa,z™ foraeR.

10. Consider the set P(R), of all polynomials with real coefficients. Let f(z),g(x) € P(R). Observe that
a polynomial of the form ag + a1z + - -+ + a,, ™ can be written as ag + a1z + -+ + apz™ + 0 -
2™l ...+ 0 2P for any p > m. Hence, we can assume f(z) = ag + a1 + azx? + - - - + a,zP and
g(x) = by + byx + bax? + - - + byaP for some a;,b; € R, 0 < i < p, for some large positive integer p.
We now define the vector addition and scalar multiplication as

f(z) @ g(x) (ao + bo) + (a1 +b1)x + -+ + (ap + by)xP, and
a® f(r) = aag+oaaix+---+aapa? for aeR.

Then P(R) forms a real vector space.

11. Let C(]—1,1]) be the set of all real valued continuous functions on the interval [—1,1]. For f,g €
C(]-1,1]) and « € R, define

(feg)(x) = flx)+g(x), and
(a® f)(x) = af(x), forall ze[-1,1].

Then C([-1,1]) forms a real vector space. The operations defined above are called POINT WISE
ADDITION AND SCALAR MULTIPLICATION.
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12. Let V and W be real vector spaces with binary operations (4, e) and (@, ®), respectively. Consider
the following operations on the set V- x W : for (x1,y1), (Xx2,y2) € V x W and « € R, define

(x1,y1) @ (x2,y2) = (x1+%2,y1Py2), and
ao(x1,y1) = (aex;,a®yi).

On the right hand side, we write x; + X5 to mean the addition in V, while y; @ y5 is the addition in
W. Similarly, « e x; and a ® y; come from scalar multiplication in V' and W, respectively. With the
above definitions, V' x W also forms a real vector space.

The readers are advised to justify the statements made in the above examples.

From now on, we will use ‘u+ v’ in place of ‘u® v’ and ‘a - u or au’ in place of ‘a ® u’.

3.1.3 Subspaces

Definition 3.1.6 (Vector Subspace) Let S be a NON-EMPTY SUBSET of V. S(F) is said to be a subspace
of V(F) if cu+ Bv € S whenever , 5 € F and u, v € S; where the vector addition and scalar multiplication
are the same as that of V(IF).

Remark 3.1.7 Any subspace is a vector space in its own right with respect to the vector addition and
scalar multiplication that is defined for V (F).

Example 3.1.8 1. Let V(FF) be a vector space. Then
(a) S = {0}, the set consisting of the zero vector 0,
(b) S=V
are vector subspaces of V. These are called trivial subspaces.

2. Let S = {(x,y,2) € R3: 2 +y — 2 =0}. Then S is a subspace of R3. (S is a plane in R3 passing
through the origin.)

3. Let S = {(z,y,2) € R®: 2 +y+ 2 = 3}. Then S is not a subspace of R3. (S is again a plane in R3
but it doesn't pass through the origin.)

4. Let S = {(z,y,2) €R®: 2z ==x}. Then S is a subspace of R>.

5. The vector space P, (R) is a subspace of the vector space P(R).

Exercise 3.1.9 1. Which of the following are correct statements?
(a) Let S = {(x,y,2) € R®: 2z =22} Then S is a subspace of R3.
(b) Let V(F) be a vector space. Let x € V. Then the set {ax : a € F} forms a vector subspace of V.
(c) Let W = {f € C([-1,1]) : f(1/2) = 0}. Then W is a subspace of the real vector space,

C([-1,1]).
2. Which of the following are subspaces of R"(RR)?

(a) {( ) a1 > 0}

(b) {( )@y + 229 = 43}

(c) {(z1,22,...,2p) : x1is rational }.

(d) {( )

cxy = 73}
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(e) {(w1,22,...,2y) : either 1 or x5 or both is0}.
(f) {(‘T17x27' b ;xn) : |5L‘1| S 1}'

3. Which of the following are subspaces of ¢)C"™(R) #i)C"(C)?

(a) {(z1,22,-..,2n) : z1is real }.
(b) {(z1,22,...,2n): 21 + 22 = Z3}.
(c) {(z1,22,---,2n) :| 21 |=] 22 |}

3.1.4 Linear Combinations

Definition 3.1.10 (Linear Span) Let V() be a vector space and let S = {uj,ua,...,u,} be a non-empty
subset of V. The linear span of S is the set defined by

L(S) = {aiui+asus+---+ayu,:a; €F,1<i<n}
If S is an empty set we define L(S) = {0}.

Example 3.1.11 1. Notethat (4,5,5) is a linear combination of (1,0,0), (1,1,0),and (1,1,1) as (4,5,5) =
5(1,1,1) — 1(1,0,0) 4+ 0(1,1,0).
For each vector, the LINEAR COMBINATION IN TERMS OF THE VECTORS (1,0,0),(1,1,0), AND
(1,1,1) 1S UNIQUE.

2. Is (4,5,5) a linear combination of (1,2,3),(—1,1,4) and (3,3,2)?
Solution: We want to find aq, as, a3 € R such that

a1(1,2,3) + az(—1,1,4) + as(3,3,2) = (4,5,5). (3.1.1)

Check that 3(1,2,3)+(—1)(—1,1,4)+0(3,3,2) = (4,5, 5). Also, in this case, the vector (4,5, 5) DOES
NOT HAVE A UNIQUE EXPRESSION AS LINEAR COMBINATION OF VECTORS (1,2,3),(—1,1,4) AND
(3,3,2).

3. Verify that (4,5, 5) is not a linear combination of the vectors (1,2,1) and (1,1,0)?
4. The linear span of S = {(1,1,1),(2,1,3)} over R is

L(95)

{a(1,1,1) + 8(2,1,3) : a, 8 € R}
{la+28,a+8,a+30):a,8 € R}
{(z,y,2) €R®: 22 —y = z}.

as 2(a+28)— (a+pB)=a+36,and if z=2z —y, takea =2y —z and S =z — y.

Lemma 3.1.12 (Linear Span is a subspace) Let V() be a vector space and let S be a non-empty subset
of V. Then L(S) is a subspace of V (F).

PROOF. By definition, S C L(S) and hence L(S) is non-empty subset of V. Let u,v € L(S). Then, for
1 <4 < n there exist vectors w; € S, and scalars «;, 8; € F such that u = ayw; + aows + - - + a, Wy,
and v = fiwy + fows + - - - + B, W,. Hence,

u+v=(+pB)wi+- -+ (an+ Bn)wy € L(5).

Thus, L(S) is a vector subspace of V(F). O
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Remark 3.1.13 Let V(IF) be a vector space and W C V be a subspace. If S C W, then L(S) C W is a
subspace of W as W' is a vector space in its own right.

Theorem 3.1.14 Let S be a non-empty subset of a vector space V. Then L(S) is the smallest subspace of
V' containing S.

PROOF. For every u € S, u = lL.u € L(S) and therefore, S C L(S). To show L(S) is the smallest
subspace of V' containing .S, consider any subspace W of V' containing S. Then by Proposition 3.1.13,

L(S) C W and hence the result follows. O
Definition 3.1.15 Let A be an m X n matrix with real entries. Then using the rows a},a},... al, € R"
and columns by, by, ..., b, € R™, we define

1. RowSpace(A) = L(ay,ag,...,a,),

2. ColumnSpace(A) = L(b1,ba, ..., b,),

3. NullSpace(A), denoted N'(A) as {x' € R" : Ax = 0}.

4. Range(A), denoted Im (A) = {y : Ax =y for some x! € R"}.

Note that the “column space” of a matrix A consists of all b such that Ax = b has a solution. Hence,
ColumnSpace(A) = Range(A).

Lemma 3.1.16 Let A be a real m x n matrix. Suppose B = F A for some elementary matrix E. Then
Row Space(A) = Row Space(B).

PROOF. We prove the result for the elementary matrix E;;(c), where ¢ # 0 and i < j. Let af,a}, ... al,
be the rows of the matrix A. Then B = E;;(c)A gives us
Row Space(B) = L(ai,...,a;—1,a; +caj,...,an)
= {ma; +--+ai1a 1+ ai(a; +cag) + -
tama, : a eR 1 << m}
= {Za4a4+ai~caj :QZGR,lgégm}
=1
= {ZﬂeaetﬂeéRJSme}
=1
= L(al,...,ai_l,ai,...,am)
= Row Space(A)
O

Theorem 3.1.17 Let A be an m x n matrix with real entries. Then
1. N(A) is a subspace of R™;

2. the non-zero row vectors of a matrix in row-reduced form, forms a basis for the row-space. Hence
dim( Row Space(A)) = row rank of (4).
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PROOF. Part 1) can be easily proved. Let A be an m x n matrix. For part 2), let D be the row-reduced

form of A with non-zero rows d,d},...,d%. Then B = ExE)_; - - - E2E1 A for some elementary matrices
Ey, Es, ..., E). Then, a repeated application of Lemma 3.1.16 implies Row Space(A) = Row Space(B).
That is, if the rows of the matrix A are al,ab, ... al , then

L(a17a27...7am) = L(bhbg,...,br).

Hence the required result follows. U

Exercise 3.1.18 1. Show that any two row-equivalent matrices have the same row space. Give examples
to show that the column space of two row-equivalent matrices need not be same.

2. Find all the vector subspaces of R2.

3. Let P and @ be two subspaces of a vector space V. Show that P N Q is a subspace of V. Also show
that P U @ need not be a subspace of V. When is P U @ a subspace of V7

4. Let P and Q be two subspaces of a vector space V. Define P+ @Q ={u+v:u € P,v € Q}. Show
that P + @ is a subspace of V. Also show that L(PUQ) = P + Q.

5. Let S = {x1, 2, 23,24} where 1 = (1,0,0,0), z2 = (1,1,0,0), =3 = (1,2,0,0), =4 = (1,1,1,0).
Determine all z; such that L(S) = L(S \ {z;}).

6. Let C'([—1,1]) be the set of all continuous functions on the interval [—1, 1] (cf. Example 3.1.4.11). Let
wy = {fecC(-1,1]): f(0.2) =0}, and
We = {feC(-1,1]): f’(i)exists 1.
Are W1, W subspaces of C([—1,1])?

7. Let V = {(x,y) : z,y € R} over R. Define (x,y) ® (z1,y1) = (x + 21,0) and a © (z,y) = (az,0).
Show that V' is not a vector space over R.

8. Recall that M, (R) is the real vector space of all n x n real matrices. Prove that the following subsets
are subspaces of M, (R).

(a) sl, = {A € M,(R) : trace(4) =0}
(b) Sym,, = {4 € M,(R) : A= A’}
(c) Skew, = {4 € M,(R) : A+ A =0}
9. Let V =R. Definex @y =x—y and a ® z = —ax. Which vector space axioms are not satisfied here?

In this section, we saw that a vector space has infinite number of vectors. Hence, one can start with
any finite collection of vectors and obtain their span. It means that any vector space contains infinite
number of other vector subspaces. Therefore, the following questions arise:

1. What are the conditions under which, the linear span of two distinct sets the same?

2. Is it possible to find/choose vectors so that the linear span of the chosen vectors is the whole vector
space itself?

3. Suppose we are able to choose certain vectors whose linear span is the whole space. Can we find

the minimum number of such vectors?

We try to answer these questions in the subsequent sections.
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3.2 Linear Independence

Definition 3.2.1 (Linear Independence and Dependence) Let S = {u;,us,...,u,,} be any non-empty
subset of V. If there exist some non-zero a;'s 1 <14 < m, such that

aju; +agug 4+ -+ Uy, = 0,

then the set S is called a linearly dependent set. Otherwise, the set S is called linearly independent.

Example 3.2.2 1. Let S ={(1,2,1),(2,1,4),(3,3,5)}. Then check that 1(1,2,1)+1(2,1,4)+(—1)(3,3,5) =
(0,0,0). Since &1 =1, = 1 and a3 = —1 is a solution of (3.2.1), so the set S is a linearly dependent
subset of R3.

2. Let S ={(1,1,1),(1,1,0),(1,0,1)}. Suppose there exists «, 3,7 € R such that «(1,1,1)+5(1,1,0)+
~v(1,0,1) = (0,0,0). Then check that in this case we necessarily have « = 8 = v = 0 which shows
that the set S = {(1,1,1),(1,1,0),(1,0,1)} is a linearly independent subset of R3.

In other words, if S = {uj,us,...,u,} is a non-empty subset of a vector space V, then to check
whether the set S is linearly dependent or independent, one needs to consider the equation

ajuy + agug + -+ apu,, = 0. (3.2.1)

In case a3 = a3 = -+ = ,,, = 0 is THE ONLY SOLUTION of (3.2.1), the set S becomes a linearly
independent subset of V. Otherwise, the set S becomes a linearly dependent subset of V.

Proposition 3.2.3 Let V' be a vector space.
1. Then the zero-vector cannot belong to a linearly independent set.
2. If S'is a linearly independent subset of V| then every subset of S is also linearly independent.
3. If S'is a linearly dependent subset of V' then every set containing S is also linearly dependent.

PROOF. We give the proof of the first part. The reader is required to supply the proof of other parts.
Let S = {0 = uj,us,...,u,} be a set consisting of the zero vector. Then for any v # o, yu; + ous +
-+ ++0u, = 0. Hence, for the system aju; + asus + - - - + asnu,,, = 0, we have a non-zero solution oy = v

and 0 = ag = - -+ = a,. Therefore, the set S is linearly dependent. U

Theorem 3.2.4 Let {vi,Va,...,Vv,} be a linearly independent subset of a vector space V. Suppose there
exists a vector vp41 € V, such that the set {v1,va,...,vp,vpi1} is linearly dependent, then v,4q is a linear

combination of vi,va,..., V.

PROOF. Since the set {vi,va,...,Vp, Vpt1} is linearly dependent, there exist scalars o, oo, ..., apt1,
NOT ALL ZERO such that

vy + ave + -+ apVy + a1 Ve = 0. (3.2.2)
CLAIM: ap4q # 0.
Let if possible apy1 = 0. Then equation (3.2.2) gives ayvy + agve + -+ + apv, = 0 with not all
a;, 1 <1 < p zero. Hence, by the definition of linear independence, the set {v1,va,...,v,} is linearly
dependent which is contradictory to our hypothesis. Thus, a,41 # 0 and we get
1

Qp+1

Vpt1 = — (avi+ -+ apvy).
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Note that a; € F for every 7, 1 <i < p—+1 and hence _ajil € I for 1 < ¢ < p. Hence the result follows.
O

We now state two important corollaries of the above theorem. We don’t give their proofs as they are

easy consequence of the above theorem.

Corollary 3.2.5 Let {uj,us,...,u,} be a linearly dependent subset of a vector space V. Then there exists
a smallest k&, 2 < k < n such that

L(ul, ug, ..., uk) = L(U_l7 ug, ..., U—k—l)-
The next corollary follows immediately from Theorem 3.2.4 and Corollary 3.2.5.

Corollary 3.2.6 Let {vq,v2,...,v,} be a linearly independent subset of a vector space V. Suppose there
exists a vector v € V, such that v ¢ L(vq,va,...,vp). Then the set {vi,va,...,vp, v} is also linearly
independent subset of V.

Exercise 3.2.7 1. Consider the vector space R?. Let u; = (1,0). Find all choices for the vector uy such
that the set {uj,us} is linear independent subset of R2. Does there exist choices for vectors u, and
u3 such that the set {u;, us, u3} is linearly independent subset of R??

2. If none of the elements appearing along the principal diagonal of a lower triangular matrix is zero, show

that the row vectors are linearly independent in R™. The same is true for column vectors.

3. Let S ={(1,1,1,1),(1,-1,1,2),(1,1,—1,1)} C R*. Determine whether or not the vector (1,1,2,1) €
L(S)?

4. Show that S = {(1,2,3),(-2,1,1),(8,6,10)} is linearly dependent in R3.

5. Show that S = {(1,0,0),(1,1,0),(1,1,1)} is a linearly independent set in R3. In general if {f1, f2, f3}
is a linearly independent set then {f1, f1 + fo, f1 + f2 + f3} is also a linearly independent set.

6. In R3, give an example of 3 vectors u,v and w such that {u,v,w} is linearly dependent but any set

of 2 vectors from u, v, w is linearly independent.
7. What is the maximum number of linearly independent vectors in R3?
8. Show that any set of k vectors in R3 is linearly dependent if k& > 4.
9. Is the set of vectors (1,0), ( i,0) linearly independent subset of C? (R)?

10. Under what conditions on « are the vectors (1 + a,1 — a) and (o — 1,1 + «) in C%(R) linearly
independent?

11. Let u,v € V and M be a subspace of V. Further, let K be the subspace spanned by M and u and H
be the subspace spanned by M and v. Show that if v € K and v & M then u € H.

3.3 Bases

Definition 3.3.1 (Basis of a Vector Space) 1. A non-empty subset B of a vector space V is called a
basis of V' if

(a) B is a linearly independent set, and

(b) L(B) =1V, i.e., every vector in V can be expressed as a linear combination of the elements of .



3.3. BASES 59

2. A vector in B is called a basis vector.

Remark 3.3.2 Let {v1,va,...,v,} be a basis of a vector space V(F). Then any v € V is a UNIQUE
LINEAR COMBINATION of the basis vectors, vi,Vva,...,Vp.
Observe that if there exists a v € W such that v = o;vi +aave+---+opvy and v = vy + fava +
-+ ppvp then
O0=v—v=_a1—pf1)vi+ (g —B2)va+ -+ (ap — Bp)Vp.
But then the set {v1,va,...,v,} is linearly independent and therefore the scalars a; — 3; for 1 <i <p

must all be equal to zero. Hence, for 1 < i < p, a; = 3; and we have the uniqueness.

By convention, the linear span of an empty set is {0}. Hence, the empty set is a basis of the vector

space {0}.
Example 3.3.3 1. Check that if V = {(z,%,0) : 7,y € R} C R3, then B = {(1,0,0),(0,1,0)} or
B ={(1,0,0),(1,1,0)} or B={(2,0,0),(1,3,0)} or --- are bases of V.

2. For1 <i<m,lete; =(0,...,0, 1 ,0,...,0) € R". Then, the set B = {ej,eq,...,e,} forms

i th place
a basis of R™. This set is called the standard basis of R".

That is, if n = 3, then the set {(1,0,0), (0, 1,0),(0,0,1)} forms an standard basis of R3.

3. LetV ={(z,y,2) : v+y—2z = 0, z,y,2 € R} be a vector subspace of R3. Then S = {(1,1,2),(2,1,3),(1,2,3)} C
V. It can be easily verified that the vector (3,2,5) € V and

(3,2,5)=(1,1,2) + (2,1,3) = 4(1,1,2) — (1,2, 3).

Then by Remark 3.3.2, S cannot be a basis of V.

A basis of V' can be obtained by the following method:

The condition z + y — z = 0 is equivalent to z = z + y. we replace the value of z with x + y to get
(@,9,2) = (z,y,2 +y) = (2,0,2) + (0,y,y) = x(1,0,1) + y(0,1,1).

Hence, {(1,0,1),(0,1,1)} forms a basis of V.

4. Llet V={a+ib:a,b € R} and F = C. Thatis, V is a complex vector space. Note that any element
a4+ ib € V can be written as a + ib = (a + ib)1. Hence, a basis of V' is {1}.

5. Let V={a+ib:a,beR} and F =R. Thatis, V is a real vector space. Any element a +ib € V is
expressible as @ - 1+ b -i. Hence a basis of V is {1,i}.
Observe that i is a vector in C. Also, ¢ € R and hence 7 - (1 4+ 0-4) is not defined.

6. Recall the vector space P(R), the vector space of all polynomials with real coefficients. A basis of this

vector space is the set

{1, 2,22, ... 2", ...}
This basis has infinite number of vectors as the degree of the polynomial can be any positive integer.
Definition 3.3.4 (Finite Dimensional Vector Space) A vector space V is said to be finite dimensional if

there exists a basis consisting of finite number of elements. Otherwise, the vector space V is called infinite

dimensional.

In Example 3.3.3, the vector space of all polynomials is an example of an infinite dimensional vector

space. All the other vector spaces are finite dimensional.
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Remark 3.3.5 We can use the above results to obtain a basis of any finite dimensional vector space V

as follows:
Step 1: Choose a non-zero vector, say, vi € V. Then the set {v1} is linearly independent.

Step 2: If V = L(v1), we have got a basis of V. Else there exists a vector, say, vo € V such that
vy € L(v1). Then by Corollary 3.2.6, the set {vy, vz} is linearly independent.

Step 3: If V = L(v1,v2), then {v1,va} is a basis of V. Else there exists a vector, say, vs € V such
that vy & L(v1,va). So, by Corollary 3.2.6, the set {v1,va,vs} is linearly independent.

At the ith step, either V- = L(v1,va,...,V;), or L(vi,va,...,v;) # V.
In the first case, we have {vi,va,...,v;} as a basis of V.

In the second case, L(v1,Va,...,v;) C V. So, we choose a vector, say, v,y1 € V such that v,y &
L(vi,va,...,v;). Therefore, by Corollary 3.2.6, the set {vi,va,...,v;11} is linearly independent.

This process will finally end as V' is a finite dimensional vector space.

Exercise 3.3.6 1. Let S = {vy,Vva,...,Vv,} be a subset of a vector space V(F). Suppose L(S) =V but
S is not a linearly independent set. Then prove that each vector in V' can be expressed in more than

one way as a linear combination of vectors from S.
2. Show that the set {(1,0,1),(1,4,0),(1,1,1—14)} is a basis of C3(C).

3. Let A be a matrix of rank . Then show that the r non-zero rows in the row-reduced echelon form of

A are linearly independent and they form a basis of the row space of A.

3.3.1 Important Results

Theorem 3.3.7 Let {vi,Vva,...,v,} be a basis of a given vector space V. If {wy,wa,...,w,,} is a set of

vectors from V' with m > n then this set is linearly dependent.

PROOF. Since we want to find whether the set {wy,wa,...,w,,} is linearly independent or not, we
consider the linear system
Q1W1 + oWy + -+ + Wy, = 0 (3.3.1)

with a1, g, ..., ap, as the m unknowns. If the solution set of this linear system of equations has more
than one solution, then this set will be linearly dependent.

As {vy,va,...,v,}is a basis of V and w; € V, for each i, 1 < i < m, there exist scalars a;;, 1 <14 <
n, 1 < j < m, such that

W1 = a11Vi+tazive+ -+ anp1vy
Wy = Q12V1 -+ a2Vy+ -+ apaVp
Wy = A1mVi+a2mVe + -+ Gum V.

The set of equations (3.3.1) can be rewritten as

n n n
(5] E aj1Vj + a9 E anVj + e + [67%%) E aijj = 0
j=1

j=1 j=1

ie., <§: aia1i> vy + <i aia2i> vy + -+ <i aiam) v, = 0.
=1 i=1

i=1
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Since the set {vy,va,...,v,} is linearly independent, we have

m m m
E ;a1; = E Qg = -+ = E Qi = 0.
i=1 i=1 i=1

Therefore, finding «;’s satisfying equation (3.3.1) reduces to solving the system of homogeneous equations

a1l a1z o Gim
. a21 Q22 - A2m . .
Aa = 0 where o = (aq,a2,...,0,,) and A= | | ] . | . Since n < m, i.e., THE NUMBER
an1  an2 e Anm

OF EQUATIONS is strictly less than THE NUMBER OF UNKNOWNS, Corollary 2.6.3 implies that the solution
set consists of infinite number of elements. Therefore, the equation (3.3.1) has a solution with not all

a;, 1 < i< m, zero. Hence, the set {w1,ws,..., w,,} is a linearly dependent set. O

Remark 3.3.8 Let V' be a vector subspace of R® with spanning set S. We give a method of finding a
basis of V' from S.

1. Construct a matrix A whose rows are the vectors in S.

2. Use only the elementary row operations R;(c) and R;;(c) to get the row-reduced form B of A (in

fact we just need to make as many zero-rows as possible).
3. Let B be the set of vectors in S corresponding to the non-zero rows of B.

Then the set B is a basis of L(S) = V.

Example 3.3.9 Let S = {(1,1,1,1),(1,1,—1,1),(1,1,0,1),(1,—1,1,1)} be a subset of R*. Find a basis of

L(S).
1 1 1 1
. 1 1 -1 1 . .
Solution: Here A = L1 0 1l Applying row-reduction to A, we have
1 -1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 0O 0 -2 0|=——10 O 0 O
Ri2(—1),R13(—1), R14(—1 Rao—
L1 o | BeCDRsCDRGGL G Ree | g
1 -1 1 1 0 -2 0 O 0 -2 0 0

Observe that the rows 1,3 and 4 are non-zero. Hence, a basis of L(S) consists of the first, third and fourth
vectors of the set S. Thus, B={(1,1,1,1), (1,1,0,1), (1,-1,1,1)} is a basis of L(S).

Observe that at the last step, in place of the elementary row operation R3o(—2), we can apply Rzg(—%)
to make the third row as the zero-row. In this case, we get {(1,1,1,1), (1,1,—1,1), (1,—1,1,1)} as a basis
of L(S).

Corollary 3.3.10 Let V be a finite dimensional vector space. Then any two bases of V' have the same

number of vectors.

PrROOF. Let {uj,us,...,u,} and {vi,va,...,v,;,} be two bases of V with m > n. Then by the above
theorem the set {vy,va,..., v} is linearly dependent if we take {uj, ug,...,u,} as the basis of V. This
contradicts the assumption that {vi,va,...,v,;,} is also a basis of V. Hence, we get m = n. O

Definition 3.3.11 (Dimension of a Vector Space) The dimension of a finite dimensional vector space V
is the number of vectors in a basis of V, denoted dim(V').
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Note that the Corollary 3.2.6 can be used to generate a basis of ANY NON-TRIVIAL FINITE DIMENSIONAL
VECTOR SPACE.

Example 3.3.12 1. Consider the complex vector space C?(C). Then,
(a+ib,c+id) = (a4 ib)(1,0) + (¢ +id)(0,1).
So, {(1,0),(0,1)} is a basis of C?(C) and thus dim(V) = 2.
2. Consider the real vector space C2(R). In this case, any vector
(a+ib,c+id) = a(1,0) + b(i,0) + ¢(0,1) 4 d(0,4).
Hence, the set {(1,0), (¢,0),(0,1),(0,7)} is a basis and dim (V') = 4.

Remark 3.3.13 It is important to note that the dimension of a vector space may change if the under-

lying field (the set of scalars) is changed.

Example 3.3.14 Let V be the set of all functions f : R"—R with the property that f(x+y) = f(x)+ f(y)
and f(ax) = af(x). For f,g € V, and t € R, define
(f@g)x) = f(x)+g(x) and
tof)x) = [f(tx).
Then V is a real vector space.
For 1 < i < n, consider the functions
e;(x) = ei((xl,x27 e 796”)) = x;.
Then it can be easily verified that the set {e1,es2,...,e,} is a basis of V' and hence dim (V') = n.

The next theorem follows directly from Corollary 3.2.6 and Theorem 3.3.7. Hence, the proof is
omitted.

Theorem 3.3.15 Let S be a linearly independent subset of a finite dimensional vector space V. Then the
set S can be extended to form a basis of V.

Theorem 3.3.15 is equivalent to the following statement:
Let V be a vector space of dimension n. Suppose, we have found a linearly independent set S =
{v1,va,...,v,} C V. Then there exist vectors v,t1,...,v, in V such that {vi,va,..., v, } is a basis of
V.

Corollary 3.3.16 Let V' be a vector space of dimension n. Then any set of n linearly independent vectors

forms a basis of V. Also, every set of m vectors, m > n, is linearly dependent.

Example 3.3.17 Let V = {(v,w,7,9,2) € R’ :v+2—-3y+2 =0} and W = {(v,w,z,y,2) € R®
w—x—2=0,v=y} be two subspaces of R®. Find bases of V and W containing a basis of V N W.
Solution: Let us find a basis of V N W. The solution set of the linear equations
v+x—3y+2=0, w—x—2=0 and v=y
is given by
(v, w,2,y,2)" = (y,2y, 2,9, 2y — 2)" = 9(1,2,0,1,2)" +2(0,0,1,0,-1)".

Thus, a basisof VN W is
{(1,2,0,1,2),(0,0,1,0,—1)}.

To find a basis of W containing a basis of VN W, we can proceed as follows:
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1. Find a basis of .

2. Take the basis of V N W found above as the first two vectors and that of W as the next set of vectors.

Now use Remark 3.3.8 to get the required basis.

Heuristically, we can also find the basis in the following way:
A vector of W has the form (y,x + z,z,y,2) for x,y,z € R. Substituting y = 1,2 = 1, and z = 0 in
(y,x + z,x,y, z) gives us the vector (1,1,1,1,0) € W. It can be easily verified that a basis of W is

{(172307 1a 2)7 (0507 1307 _1)7 (L 17 17 130)}

Similarly, a vector of V' has the form (v, w, z, y, 3y —v—z) for v, w, z,y € R. Substitutingv =0,w =1,2 =0
and y = 0, gives a vector (0,1,0,0,0) € V. Also, substituting v =0,w = 1,2 =1 and y = 1, gives another
vector (0,1,1,1,2) € V. So, a basis of V' can be taken as

{(17 27 07 17 2)7 (07 07 17 07 _1)7 (07 17 07 07 0)’ (07 17 17 ]" 2)}'

Recall that for two vector subspaces M and N of a vector space V (F), the vector subspace M + N
is defined by
M+N={u+v:ueM, ve N}

With this definition, we have the following very important theorem (for a proof, see Appendix 14.4.1).
Theorem 3.3.18 Let V(F) be a finite dimensional vector space and let M and N be two subspaces of V.

Then
dim(M) 4+ dim(N) = dim(M + N) + dim(M N N). (3.3.2)

Exercise 3.3.19 1. Find a basis of the vector space P, (R). Also, find dim(P,(R)). What can you say
about the dimension of P(R)?

2. Consider the real vector space, C([0,27]), of all real valued continuous functions. For each n consider
the vector e,, defined by e, (z) = sin(nz). Prove that the collection of vectors {e,, : 1 <n < oo} is a
linearly independent set.

[Hmt: On the contrary, assume that the set is linearly dependent. Then we have a finite set of vectors,
say {ex,,€k,,...,€r, } that are linearly dependent. That is, there exist scalars oy € R for 1 <1i < { not all

zero such that
aq sin(kiz) + oo sin(kez) + - - - + agsin(kex) =0 for all x € [0, 27].
Now for different values of m integrate the function
/27r sin(ma) (a1 sin(k1z) + ag sin(kex) + - - - + agsin(kex)) de
0

to get the required result.]
3. Show that the set {(1,0,0),(1,1,0),(1,1,1)} is a basis of C3(C). Is it a basis of C*(R) also?
4. Let W = {(z,y,2,w) € R* : 2 +y — 2z +w = 0} be a subspace of R*. Find its basis and dimension.

5 Let V={(r,y,z,w) ER*:x+y—z+w=0,r+y+z+w=0}and W = {(2,y,2,w) € R*:
r—y—z+w=0,7+2y —w = 0} be two subspaces of R*. Find bases and dimensions of V, W,
VAW and V + W.

6. Let V be the set of all real symmetric n x n matrices. Find its basis and dimension. What if V' is the

complex vector space of all n x n Hermitian matrices?
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10.

11.

12.

13.

14.

15.
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. If M and N are 4-dimensional subspaces of a vector space V' of dimension 7 then show that M and

N have at least one vector in common other than the zero vector.

Let P = L{(1,0,0),(1,1,0)} and @ = L{(1,1,1)} be vector subspaces of R. Show that P+ @Q = R3
and PN Q = {0}. If u € R3, determine up,ug such that u = up + ug where up € P and ug € Q.
Is it necessary that up and ug are unique?

. Let W1 be a k-dimensional subspace of an n-dimensional vector space V(F) where k > 1. Prove that

there exists an (n — k)-dimensional subspace W5 of V' such that Wi N W5 = {0} and W1 + Wy = V.

Let P and @ be subspaces of R™ such that P+ @Q = R™ and P N Q = {0}. Then show that each
u € R™ can be uniquely expressed as u = up + ug where up € P and ug € Q.

Let P = L{(1,-1,0),(1,1,0)} and Q = L{(1,1,1),(1,2,1)} be vector subspaces of R3. Show that
P+Q =TR3and PNQ # {0}. Show that there exists a vector u € R? such that u cannot be written
uniquely in the form u = up + ug where up € P and ug € Q.

Recall the vector space P4(R). Is the set,
W = {p(z) € P4(R) : p(=1) = p(1) = 0}
a subspace of P4(R)? If yes, find its dimension.

Let V be the set of all 2 x 2 matrices with complex entries and a11; + as2 = 0. Show that V' is a real
vector space. Find its basis. Also let W = {A € V : as; = —a12}. Show W is a vector subspace of V,

and find its dimension.

1 2 1 3 2 2 4 0 6

Let A = 0 2 22 ,and B = Lo =2 be two matrices. For A and B find
2 =2 40 -3 -5 1 —4
4 2 5 6 10 -1 -1 1 2

the following:

(a) their row-reduced echelon forms.
(b) the matrices Py and P such that Py A and P> B are in row-reduced form.
d) a basis each for the range spaces of A and B.

bases of the null spaces of A and B.

)
)
(c) a basis each for the row spaces of A and B.
(d)
e)
)

(
(f

Let M (n,R) denote the space of all n x n real matrices. For the sets given below, check that they are

the dimensions of all the vector subspaces so obtained.

subspaces of M (n,R) and also find their dimension.

(a) sl(n,R)={A € M(n,R) : tr(A) = 0}, where recall that tr(A) stands for trace of A.
(b) )={4Ae Mn,R) : A=A}

S(n,R
() A(n,R)={A e M(n,R) : A+ A" =0}.

Before going to the next section, we prove that for any matrix A of order m x n

Row rank(A) = Column rank(A).
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Proposition 3.3.20 Let A be an m X n real matrix. Then
Row rank(A) = Column rank(A).

PROOF. Let Ry, Rs,..., R, be the rows of A and C1,C5,...,C, be the columns of A. Note that
Row rank(A) = r, means that

dim(L(R1, Ra, ..., Ry)) =1

Hence, there exists vectors

u; = (ull,...,uln),UQ = (UQl,...,UQn),...,uT = (url,...,um) ER”
with
R; € L(uj,ug,...,u,) € R") forall i,1<i<m.

Therefore, there exist real numbers «a;;, 1 <i <m, 1 <j <r such that

s T T
Ry = ajjug + apuz + - -+ agpu, = ( E Q1351 E Q1iU2, - - -y E Q13 Uin),
i=1 i=1 i=1

s T T
Ry = asiug + azug + -+ - + agru, = ( E Q2451 , E Q2iU2, - - -y E Q2 Uin ),
i=1 i=1 i=1

and so on, till

r r r
Rm = Qmiur + -+ Oy = ( E AmiUil, E A Ui2y -« - -y E amluzn)
=1 =1 1=1

So,
- -
Q1 U41
i=1 Q11 Q12 a1y
> Qo a2 Q22 Q2
C = |i=1 =wun | . | fua | . |+ Fun
T Am1 Am2 Ay
> Qmitiin
Li=1 J
In general, for 1 < j < n, we have
-, -
> Qi
i=1 11 Q2 air
> (20U Q21 23 Q2r
Cj: i=1 = U1y . J,-qu . +"'+urj
L Qm1 Qm2 Qe
> Qmitli
Li=1 d
Therefore, we observe that the columns Cy,Cs, ..., (), are linear combination of the r vectors
t t t
(0411,06217 e aaml) ) (0612,06227 e aamQ) R (Oélr,Oé2r, e 7amr) .

Therefore,
Column rank(A) = dim(L(Cy,Cs,...,Cy)) =< r = Row rank(A).
A similar argument gives
Row rank(A) < Column rank(A).

Thus, we have the required result.
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3.4 Ordered Bases

Let B = {uj,us,...,u,} be a basis of a vector space V(F). As B is a set, there is no ordering of its
elements. In this section, we want to associate an order among the vectors in any basis of V.

Definition 3.4.1 (Ordered Basis) An ordered basis for a vector space V(F) of dimension n, is a ba-
sis {uj,ug,...,u,} together with a one-to-one correspondence between the sets {u;,us,...,u,} and
{1,2,3,...,n}.

If the ordered basis has u; as the first vector, us as the second vector and so on, then we denote this
ordered basis by

(ur,ug,...,uy).

Example 3.4.2 Consider P2(R), the vector space of all polynomials of degree less than or equal to 2 with
coefficients from R. The set {1 — z,1 + x, 2%} is a basis of Py(R).
For any element ag + a1 + agz? € P2(R), we have

2 aO_al(

ap + a1
ag + a1x + axx” = _—

1—2)+ (14 z) + agz?.

ag + a1

—aj . .
20— T is the first component,

and asy is the third component of the vector ag + a1z + as2?.

. ) a )
If (1—2,1+42,22) is an ordered basis, then 0 is the second component,

. apt+ay . . ap — ay .

If we take (1 + #,1 — 2,2?) as an ordered basis, then 0 ! is the first component, 0 ! is the
second component, and as is the third component of the vector ag + a2 + asz2.

That is, as ordered bases (uy, ug, ..., u,), (ug,us, ..., u,,u1), and (u,,us, us, ..., u,_1) are different
even though they have the same set of vectors as elements.
Definition 3.4.3 (Coordinates of a Vector) Let B = (v1,vs,...,V,) be an ordered basis of a vector space
V(F) and let ve V. If

v =[01vi+ fBava+ -+ Buvy

then the tuple (51, 82, ..., Bn) is called the coordinate of the vector v with respect to the ordered basis B.

Mathematically, we denote it by [v]z = (81, ..., 8n)!, A COLUMN VECTOR.

Suppose By = (uj,us,...,u,) and Bs = (u,,u, us,...,u,—1) are two ordered bases of V. Then for
any x € V there exists unique scalars aq, ao, ..., a, such that

X =qiu; +auz + -+ apliy, = Qply + a1y + -0 -+ Qp_1Up—1.

Therefore,
X|5, = (1,02,...,00)" and [x]g, = (n, a1, a2, ..., 00_1)"
n
Note that x is uniquely written as > «;u; and hence the coordinates with respect to an ordered

=1
basis are unique.

Suppose that the ordered basis B is changed to the ordered basis Bs = (ug,us,us, ..., u,). Then
x|, = (a2, a1,a3,...,a,)t. So, the coordinates of a vector depend on the ordered basis chosen.

Example 3.4.4 Let V = R3. Consider the ordered bases
Bi = ((1,0,0),(0,1,0),(0,0,1)), B = ((1,0,0), (1,1,0),(1,1,1)) and Bs = ((1,1,1),(1,1,0),(1,0,0)) of
V. Then, with respect to the above bases we have
(1,-1,1) = 1-(1,0,0)4+(-1)-(0,1,0)+1-(0,0,1).
= 2-(1,0,0)+(—=2)-(1,1,0) +1-(1,1,1).
1-(1,1,1)+(=2) - (1,1,0) +2-(1,0,0).
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Therefore, if we write u = (1, —1,1), then

[u]Bl = (17 -1, 1)t= [u]Bz = (27 -2, 1)t7 [u]Bs = (17 _272)t'

In general, let V be an n-dimensional vector space with ordered bases By = (uj,us,...,u,) and
By = (v1,Va,...,Vy). Since, By is a basis of V, there exists unique scalars a;;, 1 < 4,7 < n such that
n
vi:Zaliul for 1 <i<n.
=1
That iS, for each i, 1 S ) S n, [Vi]Bl = (CLM, Ay« v vy am-)t.
Let v € V with [v]p, = (1, a2, ...,a,)". As By as ordered basis (v, va,...,Vv,), we have

n n n n n
VvV = E o;V; = E Q; E Aj;Uj = E E aj; 06 | Uy
i=1 i=1 j=1

j=1 \i=1

Since Bj is a basis this representation of v in terms of u;’s is unique. So,

n n n t
E 140, E a2,y - . ., E Qng O
i=1 i=1 i=1

[V]Bl

ayy A1n aq

a1 - a2n (&)

(27 Gnn (&7
= A[V]Bz

Note that the i** column of the matrix A is equal to [v;],, i.e., the i*" column of A is the coordinate

of the i*" vector v; of By with respect to the ordered basis B;. Hence, we have proved the following

theorem.
Theorem 3.4.5 Let V be an n-dimensional vector space with ordered bases B; = (uj,us,...,u,) and
By = (Vl,Vg7 . 7Vn). Let

A= [[V1]817 [V2]61= ceey [Vn]Bl] .

Then for any v € V,

Example 3.4.6 Consider two bases By = ((1,0,0),(1,1,0),(1,1,1)) and B> = ((1,1,1),(1,-1,1),(1,1,0))

of R3.
1. Then
[(xvyaz)]l’ﬁ = (x—y)-(1,0,0)—|—(y—z)~(1,1,0)+z~(1,1,1)
= (@-—yy—22)
and
@y s = (5= +2)- LD+ =52 (1L, -11)
+(x—2)-(1,1,0)

= (y;xﬁ-z,%w—z)t.
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0 2 0
2. Let A=a;;]= |0 —2 1| . The columns of the matrix A are obtained by the following rule:
1 1 0

[(1,1,1)]5, =0-(1,0,0) +0-(1,1,0) + 1-(1,1,1) = (0,0, 1),

[(1,-1,1)]5, =2-(1,0,0) 4+ (=2) - (1,1,0) + 1 - (1,1,1) = (2, -2,1)*

and
[(1,1,0)]g, =0-(1,0,0) +1-(1,1,0)+0- (1,1,1) = (0,1,0)"

That is, the elements of By = ((1, 1,1),(1,-1,1),(1,1, O)) are expressed in terms of the ordered basis
B;.

3. Note that for any (z,v,2) € R3,

T — 0 2 0 % +z
[(x,y,z)]gl =\y—=2| = 0 -2 1 z;y =A [('rvyaz)]32'
z 1 1 0 T—z

4. The matrix A is invertible and hence [(z,y, 2)]s, = A~ [(z,y, 2)]5,-

In the next chapter, we try to understand Theorem 3.4.5 again using the ideas of ‘linear transforma-

tions / functions’.

Exercise 3.4.7 1. Determine the coordinates of the vectors (1,2,1) and (4, —2,2) with respect to the
basis B = ((2,1,0),(2,1,1),(2,2,1)) of R®.

2. Consider the vector space P3(R).

(a) Show that By = (1 — 2,1+ 2% 1 — 23,3+ 2% —23) and By = (1,1 — 2,1+ 22,1 — 23) are bases
of 733(R).

(b) Find the coordinates of the vector u = 1+ x + 2 4+ 2® with respect to the ordered basis 3; and
Bs.

(c) Find the matrix A such that [u]g, = A[u]g, .
(d) Let v = ag + ar1r + azz? + azx®. Then verify the following:

- —ay
—ap — a1 + 2&2 — as

A2 =
[ ]Bl —ag — a1 + as — 2as

ap +aiy —az +as

0O 1 0 O ag + a; —as + as
-1 010 —a
-1 0 0 1 as

1 000 —as



Chapter 4

Linear Transformations

4.1 Definitions and Basic Properties

Throughout this chapter, the scalar field F is either always the set R or always the set C.

Definition 4.1.1 (Linear Transformation) Let V and W be vector spaces over F. Amap T : V—W is
called a linear transformation if

T(au+ pv) = aT'(u) + BT(v), forall o, €F, and u,v e V.
We now give a few examples of linear transformations.

Example 4.1.2 1. Define T : R—R? by T'(x) = (x,3x) for all z € R. Then T is a linear transformation
as
T(z+y)=(x+y,3(x+y)) = (2,32) + (y,3y) = T(2) + T(y).

2. Verify that the maps given below from R™ to R are linear transformations. Let x = (z1, z2,...,2y).
(a) Define T(x) = > z;.
i=1
(b) For any i, 1<1i<n,define T;(x) = x;.

n
(c) For a fixed vector a = (a1,az,...,a,) € R", define T(x) = > a;z;. Note that examples (a)
i=1
and (b) can be obtained by assigning particular values for the vector a.

3. Define T : R2—R3 by T((r,y)) = (v +vy,2x — y,z + 3y).
Then T is a linear transformation with 7'((1,0)) = (1,2,1) and T'((0,1)) = (1, -1, 3).

4. Let A be an m x n real matrix. Define a map T4 : R*"—R™ by
Ta(x) = Ax forevery x' = (z1,29,...,7,) € R".

Then T4 is a linear transformation. That is, every m X n real matrix defines a linear transformation
from R™ to R™.

5. Recall that P,,(R) is the set of all polynomials of degree less than or equal to n with real coefficients.
Define T : R"™'—P,(R) by

T((al,ag, .. -7an+1)) =a1+ax + -+ an+1In

for (a1, az,...,an11) € R*1. Then T is a linear transformation.

AO
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Proposition 4.1.3 Let T': V—W be a linear transformation. Suppose that Oy is the zero vector in V' and
Oy is the zero vector of W. Then T'(0y) = Oy .

PrROOF. Since Oy = Oy + Oy, we have
T(0v) =T(0v +0v) = T(0v) + T'(0v).

SO, T(Ov) = 0w as T(Ov) ew. O

From now on, we write 0 for both the zero vector of the domain space and the zero vector of the

range space.

Definition 4.1.4 (Zero Transformation) Let V' be a vector space and let T': V— W be the map defined
by
T(v) =0 forevery veV.

Then T is a linear transformation. Such a linear transformation is called the zero transformation and is
denoted by 0.

Definition 4.1.5 (Identity Transformation) Let V' be a vector space and let T : V—V be the map
defined by
T(v)=v forevery veV.

Then T is a linear transformation. Such a linear transformation is called the Identity transformation and is
denoted by I.

We now prove a result that relates a linear transformation 7" with its value on a basis of the domain

space.
Theorem 4.1.6 Let T : V— W be a linear transformation and B = (uy,ug,...,u,) be an ordered basis
of V. Then the linear transformation T is a linear combination of the vectors T'(u1), T'(u2), ..., T (uy,).

In other words, T is determined by T'(u1), T (us2),...,T(uy,).

PROOF. Since B is a basis of V, for any x € V| there exist scalars oy, as,...,a, such that x =

ajuy + asus + - - - + apUy,. So, by the definition of a linear transformation

T(x) =T(aus + -+ apuy) = a1 T(ua1) + - + @, T(up).

Observe that, given x € V, we know the scalars a1, as, ..., a,. Therefore, to know T'(x), we just need
to know the vectors T'(u1), T'(uz),...,T(u,) in W.

That is, for every x € V, T'(x) is determined by the coordinates (a1, as, ..., a,) of x with respect to
the ordered basis B and the vectors T'(u;), T (uz),...,T(u,) € W. O

Exercise 4.1.7 1. Which of the following are linear transformations 7' : V—W? Justify your answers.

(a) Let V=R? and W =R3 with T'( (z,y) ) = (@ +y + 1,22 — y,z + 3y)

(b) Let V =W =R? with T'( (z,y) ) = (z — y,2* — y?)

(c) Let V=W =R2 with T'( (z,y) ) = (z — y, |z|)

(d) Let V=R? and W = —>R4 with T'( (z,y) ) = (# + y,x — y, 22 + y, 3z — 4y)
(e) Let V. =W =R* with T'( (z,y,2,w) ) = (z,z,w,y)

2. Recall that M3 (R) is the space of all 2 x 2 matrices with real entries. Then, which of the following are
linear transformations 7' : M3 (R)— M3(R)?
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(a) T(A) = At (b) T(A)=T+A (¢) T(A) = A2
(d) T(A) = BAB™!, where B is some fixed 2 x 2 matrix.

. Let T : R — R be a map. Then T is a linear transformation if and only if there exists a unique c € R

such that T'(x) = cx for every x € R.

. Let A be an n x n real matrix. Consider the linear transformation

Ta(x) = Ax for every x € R™.

Then prove that T2(x) := T(T(x)) = A%x. In general, for k € N, prove that T%(x) = A*x.

. Use the ideas of matrices to give examples of linear transformations T, S : R3——R3 that satisfy:

(a) T#0, T?#0, T3 =0.

(b) T#0, S#0, SoT #0, ToS =0;where T'o S(x) =T(5(x)).
(c) S2=T2 S#T.

(d) T?=1, T#1I.

. Let T : R® — R™ be a linear transformation such that 7' # 0 and 72 = 0. Let x € R" such

that T(x) # 0. Then prove that the set {x,7T(x)} is linearly independent. In general, if T% # 0
for 1 < k < p and TP = 0, then for any vector x € R™ with TP(x) # 0 prove that the set
{x,T(x),...,TP(x)} is linearly independent.

. Let T: R™ — R™ be a linear transformation, and let xo € R™ with T'(x¢) = y. Consider the sets

S={xeR":T(x)=y} and N ={xeR":T(x)=0}.

Show that for every x € S there exists z € N such that x = x¢ + z.

. Defineamap T :C — C by T'(z) = Z, the complex conjugate of z. Is T linear on

(a) CoverR (b) C overC.

. Find all functions f : R? — R? that satisfy the conditions

(@) f((z,z))=(z,z) and
(b) f((z,y)) = (y,z) for all (z,y) € R

That is, f fixes the line y = x and sends the point (z1,y1) for 1 # y1 to its mirror image along the
line y = x.

Is this function a linear transformation? Justify your answer.

Theorem 4.1.8 Let T : V— W be a linear transformation. For w € W, define the set

T Yw)={veV:T(v)=w}

Suppose that the map T is one-one and onto.

1. Then for each w € W, the set T~1(w) is a set consisting of a single element.

2. The map T~ : W—V defined by

T~ !'(w) =v whenever T(v) = w.

is a linear transformation.
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PROOF. Since T is onto, for each w € W there exists a vector v € V such that T'(v) = w. So, the set
T~*(w) is non-empty.

Suppose there exist vectors vi, vy € V such that T(vqy) = T(v2). But by assumption, T is one-one
and therefore vi = vy. This completes the proof of Part 1.

We now show that 7! as defined above is a linear transformation. Let w1, wy € W. Then by Part 1,
there exist unique vectors vi,ve € V such that T-Y(w;) = v; and T~!(wz) = va. Or equivalently,
T(v1) = wy and T(va) = wa. So, for any a1, as € F, we have T'(a1v1 + aava) = agwi + aaws.

Thus for any a3, as € F,
T_l(alwl + OZQWQ) = q1V] + vy = Ole_l(Wl) + agT_l(WQ).

Hence T~ : W—V, defined as above, is a linear transformation. O

Definition 4.1.9 (Inverse Linear Transformation) Let 7' : V—W be a linear transformation. If the map
T is one-one and onto, then the map T~! : W—V defined by

T~ Y(w)=v whenever T(v) =w
is called the inverse of the linear transformation 7.

Example 4.1.10 1. Define T : R?>—R? by T((z,y)) = (z + y,x — y). Then T~! : RZ—R? is defined

by
T () = (CH2, 20,
Note that
ToT ' ((z,y) = T(T_l((x’y))):T((%ﬂ’%))
_ (3;+y x—y7$+y_$_y)
2 2 02 2

= (z,y).

Hence, T o T~! = I, the identity transformation. Verify that T~! o T = I. Thus, the map T ! is
indeed the inverse of the linear transformation 7.

2. Recall the vector space P,,(R) and the linear transformation 7" : R"*!1—7P, (R) defined by

T((al, ag, ..., an+1)) =a1+asx + -+ an+1In
for (a1, az,...,any1) € R"™ Then T71:P,(R)—R"! is defined as
T a1+ asz + -+ + app12™) = (a1, a2, ..., an41)

for a; + asxz + - + anp12™ € Pu(R). Verify that ToT—! = T~1oT = I. Hence, conclude that the

map T~ ! is indeed the inverse of the linear transformation 7.

4.2 Matrix of a linear transformation

In this section, we relate linear transformation over finite dimensional vector spaces with matrices. For
this, we ask the reader to recall the results on ordered basis, studied in Section 3.4.

Let V and W be finite dimensional vector spaces over the set F with respective dimensions m and n.
Also, let T : V—W be a linear transformation. Suppose B = (v1,Va,...,V,) is an ORDERED BASIS of
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V. In the last section, we saw that a linear transformation is determined by its image on a basis of the
domain space. We therefore look at the images of the vectors v; € By for 1 < j < n.
Now for each j, 1 < j < n, the vectors T(v;) € W. We now express these vectors in terms of

an ordered basis By = (W1, Wa,..., Wy,) of W. So, for each j, 1 < j < n, there exist unique scalars
aij,az;,. .., am; € F such that

T(vi) = anwi+aawa+-+anwWpy

T(v2) = a12W1+a2aWa+ -+ GmaWp,

T(vy) = @1pWi1+ a2, W2+ -+ QGmpWiy.

m
Or in short, T'(v;) = > a;;w; for 1 < j < n. In other words, for each j, 1 < j < n, the coordinates of
i=1

T'(v;) with respect to the ordered basis By is the column vector [aij,azj, ..., am;]". Equivalently,
a1y
a2j
[T(vj)ls. = | .
Amj
Let [x]p, = [*1,%2,...,2,]" be the coordinates of a vector x € V. Then
n n
T(x) = TO zv;) =Y xT(v))
j=1 j=1
n m
= > w(Y_aywi)
j=1 =1
m n
= 2 ayz)wi.
i=1 j=1
air a2 - Gin
. Q21 Q22 - G2n . .
Define a matrix A by A = ] ] . _ | - Then the coordinates of the vector T'(x) with
am1  Am2 - Amn

respect to the ordered basis Bs is

Z?Zl Q154 a1 ai2 - Gln x1
Z?Zl 25T a21 ag2 -+ G2n X2
[T(x)]Bz = . =
Z?:l Amj T am1 am2 - Amn, Tn
= A [X]Bl-

The matrix A is called the matrix of the linear transformation T with respect to the ordered bases B

and Ba, and is denoted by T'[By, Ba].
We thus have the following theorem.

Theorem 4.2.1 Let V and W be finite dimensional vector spaces with dimensions n and m, respectively.
Let T : V—W be a linear transformation. If By is an ordered basis of V' and Bs is an ordered basis of W,

then there exists an m x n matrix A = T'[B1, Bs] such that

[T(x)]Bz =A [x]Bl'
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Remark 4.2.2 Let By = (v1,Va,...,V,) be an ordered basis of V and By = (w1, Wa,...,W,,) be an

ordered basis of W. Let T : V. — W be a linear transformation with A = T[By,Bz]. Then the first

th

column of A is the coordinate of the vector T'(v1) in the basis Ba. In general, the i""! column of A is the

coordinate of the vector T'(v;) in the basis Bs.

We now give a few examples to understand the above discussion and the theorem.

Example 4.2.3 1. Let T : R>~——R? be a linear transformation, given by
T((z,y)) = (x+y,x—y)
We obtain T'[Bi, B2], the matrix of the linear transformation T" with respect to the ordered bases
Bi=((1,0),(0,1)) and Bs=((1,1),(1,-1)) of R
For any vector

WMGMKMMFF]
Yy

as (z,y) = 2(1,0) + y(0,1). Also, by definition of the linear transformation T', we have

and
T((0,1))=(1,-1)=0-(1,1)+1-(1,-1).

Thatis, [T((0,1))]s, = (0,1)%. So the T'[By, Ba] = [(1) (j . Observe that in this case,

[T((z,y) )]s, = [z +y,2 —y)ls, = 2(1,1) +y(1,-1) = H , and

Y
T%&Wmmsrouﬂzr

o | o= o] = e s,

2. Let By = ((1,0,0),(0,1,0),(0,0,1)), Bz = ((1,0,0),(1,1,0),(1,1,1)) be two ordered bases of R

Define
T:R>—R® by T(x)=x.
Then
7((1,0,0)) = 1-(1,0,0)+0-(1,1,0)+0-(1,1,1),
7((0,1,0)) = —-1-(1,0,0)+1-(1,1,0)+0-(1,1,1), and
7((0,0,1)) = 0-(1,0,0)+ (—1)-(1,1,0)+1-(1,1,1).
Thus, we have
T[Bl7B2] - [[T((17070))]52= [T((OvLO))]Bza [T((07071))]82]
= [(1,0,0)%, (=1,1,0)%, (0,—1,1)]
1 -1 0
= 0o 1 -1
0 O 1

1 0 0
Similarly check that T'[By,B1]= [0 1 0
0 0 1
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3. Let T': R*—R? be define by T'((z,y,2)) = (z+y — z,x + 2). Let By = ((1,0,0), (0,1,0),(0,0,1))
and B = ((1,0),(0,1)) be the ordered bases of the domain and range space, respectively. Then

11 -1
10 1]°

Check that that [T'(z,y, 2)|5, = T[B1,B2] [(z,9, )]s,

T[B1, B3] =

Exercise 4.2.4 Recall the space P,,(R) ( the vector space of all polynomials of degree less than or equal to
n). We define a linear transformation D : P, (R)—P,(R) by

D(ag + a1z + asx? + -+ anx") = a1 + 2a2x + - -+ + napz"”

Find the matrix of the linear transformation D.

However, note that the image of the linear transformation is contained in P,,_1(R).
Remark 4.2.5 1. Observe that
T[B1,Bo] = [[T'(v1)].: [T (V2)]Bss - - - [T'(Vi)] o]

2. It is important to note that
[T(x)]B, = T[B, B2] [x]5, -

That is, we multiply the matrix of the linear transformation with the coordinates [X|g,, of the
vector x € V' to obtain the coordinates of the vector T'(x) € W.

3. If A is an m X n matrix, then A induces a linear transformation Ty : R"—R™ defined by
Ta(x) = Ax.

We sometimes write A for Ta. Suppose that the standard bases for R™ and R™ are the ordered
bases By and B, respectively. Then observe that

T[By,Bs] = A.

4.3 Rank-Nullity Theorem

Definition 4.3.1 (Range and Null Space) Let V, W be finite dimensional vector spaces over the same set
of scalars and T : V—W be a linear transformation. We define

1. R(T)={T(x) :x €V}, and

2. N(T)={xeV:T(x) =0}.

Proposition 4.3.2 Let V and W be finite dimensional vector spaces and let T': V—W be a linear trans-

formation. Suppose that (vi,Vva,...,Vv,) is an ordered basis of V. Then
1. (a) R(T) is a subspace of W.
(b) R(T) = L(T(v1),T(v2),---, T (vn)).
(c) dim(R(T)) < dim(W).

2. (a) N(T) is a subspace of V.
(b) dim(N(T)) < dim(V').
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3. T is one-one <= N(T) = {0} is the zero subspace of V <= {T'(u;): 1 < i < n} is a basis of
R(T).

4. dim(R(T)) = dim(V) if and only if N(T") = {0}.

PRrROOF. The results about R(T") and N (T') can be easily proved. We thus leave the proof for the
readers.
We now assume that 7" is one-one. We need to show that N (T') = {0}.
Let u € N(T'). Then by definition, 7'(u) = 0. Also for any linear transformation (see Proposition 4.1.3),
T(0) = 0. Thus T'(u) = T(0). So, T is one-one implies u = 0. That is, N'(T") = {0}.

Let N(T) = {0}. We need to show that T is one-one. So, let us assume that for some u,v €
V, T(u) = T(v). Then, by linearity of T, T'(u—v) = 0. This implies, u —v € N(T) = {0}. This in turn
implies u = v. Hence, T is one-one.

The other parts can be similarly proved. O

Remark 4.3.3 1. The space R(T) is called the RANGE SPACE of T' and N (T) is called the NULL
SPACE of T.

2. We write p(T) = dim(R(T')) and v(T) = dim(N(T)).

3. p(T) is called the rank of the linear transformation T and v(T') is called the nullity of T.

Example 4.3.4 Determine the range and null space of the linear transformation

T:R*—R* with T(z,y,2) = (x —y+2,y— 2 z,2x — 5y + 52).

Solution: By Definition R(T") = L(7(1,0,0),7(0,1,0),7(0,0,1)). We therefore have

R(T) = L((1,0,1,2),(-1,1,0,-5),(1,-1,0,5))
= L((1,0,1,2),(1,-1,0,5))
= {«a(1,0,1,2)+ B(1,-1,0,5) : o, B € R}
= {(a+8,-8,0,2a04+58) :a,8 €R}
= {(z,y,2,w) €ER* 1z +y—2=0,5y— 2z +w = 0}.

Also, by definition

N(T) = {(z,y,2) €R® :T(x,y,2) =0}
= {(z,y,2) €R® : (x —y+ 2,y — 2z,2,2z — 5y + 5z) = 0}
= {(z,9,2)€R® 12 —y+2=0,y —2=0,
x=0,2z — 5y + 5z =0}

= {(z,y,2) €R® 1y —2=0,2=0}
= {(z,y,2) €R? 1y =2,2=0}
= {(0,y,v) € R3 :y arbitrary}

= L((0,1,1))

Exercise 4.3.5 1. Let T : V—W be a linear transformation and let {T'(v1),T(v2),...,T(vn)} be
linearly independent in R(T'). Prove that {vi,va,...,v,} C V is linearly independent.
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2. Let T : R2—R3 be defined by
T((1,0)) = (1,0,0), T((0,1)) = (1,0,0).

Then the vectors (1,0) and (0, 1) are linearly independent whereas T'((1,0)) and T'((0, 1)) are linearly
dependent.

3. Is there a linear transformation

T :R® — R? such that T(1,—1,1) = (1,2), and T(-1,1,2)=(1,0)?

4. Recall the vector space P, (R). Define a linear transformation
D : P, (R)—P,(R)

by
D(ag + a1z + asx? + -+ anx") = a1 + 2a2x + - - + nanz” 1.

Describe the null space and range space of D. Note that the range space is contained in the space
Pr—1(R).

5. Let T : R3 — R3 be defined by
7(1,0,0) = (0,0,1), T(1,1,0) = (1,1,1) and T(1,1,1) = (1,1,0).

(a) Find T(x,y, 2) for z,y,z € R,
(b) Find R(T") and N(T'). Also calculate p(T) and v(T).

(c) Show that T = T and find the matrix of the linear transformation with respect to the standard
basis.

6. Let T : R2 — R2 be a linear transformation with

Find the matrix representation T'[B, B] of T with respect to the ordered basis B = ((1,0),(1,1)) of
R2.

7. Determine a linear transformation 7" : R — R? whose range space is L{(1,2,0),(0,1,1),(1,3,1)}.
8. Suppose the following chain of matrices is given.
A—By —By—By--+-— B,_1 — B, — B.

If row space of B is in the row space of By and the row space of B; is in the row space of B;_; for

2 <l < k then show that the row space of B is in the row space of A.

We now state and prove the rank-nullity Theorem. This result also follows from Proposition 4.3.2.

Theorem 4.3.6 (Rank Nullity Theorem) Let T : V—W be a linear transformation and V' be a finite
dimensional vector space. Then

dim(R(T)) + dim(N(T)) = dim(V),

or equivalently p(T') + v(T') = dim(V).
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ProOOF. Let dim(V) = n and dim(N(T')) = r. Suppose {u1,us,...,u,} is a basis of N(T). Since
{u1,ug,...,u,} is a linearly independent set in V, we can extend it to form a basis of V' (see Corollary
3.3.15). So, there exist vectors {41, Ur42,...,u,} such that {u1,..., up, Ups1,...,uy} is a basis of V.

Therefore, by Proposition 4.3.2

R(T) L(T(u1), T(u2),...,T(un))
= L(0,...,0,T(trs1), T (Ur42), ..., T(un))

L(T (1), T(tiria), - .., Tun)).

We now prove that the set {T'(uy41), T(try2),...,T(upn)} is linearly independent. Suppose the set is
not linearly independent. Then, there exists scalars, a,41, @p12, ..., ay, not all zero such that

1T (Urg1) + @pgoT(Ups2) + - - + @ T (uy) = 0.

That is,
T(ar-l-lur-i-l + Qppolppa + -0+ anun) =0.

So, by definition of N (T),
Qg 1Upt1 + Qriolpia + -+ apty € N(T) = L(ug, . .., up).
Hence, there exists scalars «;, 1 < ¢ < r such that

Qr41Upy1 + Qpg2Upy2 + -+ Qply = QU + QU2 + - - - + QU

That is,

U]+ + Uy — Q1 Upgp — s — QU = 0.
But the set {uy,us,...,un} is a basis of V' and so linearly independent. Thus by definition of linear
independence

a; =0 forall 7, 1 <i<n.

In other words, we have shown that {7 (uy+1), T(tur42),...,T (un)} is a basis of R(T'). Hence,

dim(R(T)) + dim(N(T)) = (n —r) + r =n = dim(V).

Using the Rank-nullity theorem, we give a short proof of the following result.

Corollary 4.3.7 Let T': V—V be a linear transformation on a finite dimensional vector space V. Then
T is one-one <= T is onto <= T is invertible.

PROOF. By Proposition 4.3.2, T is one-one if and only if N(T) = {0}. By the rank-nullity Theorem
4.3.6 N(T) = {0} is equivalent to the condition dim(R(T")) = dim(V'). Or equivalently T is onto.
By definition, T is invertible if T" is one-one and onto. But we have shown that T is one-one if and

only if T is onto. Thus, we have the last equivalent condition. U

Remark 4.3.8 Let V be a finite dimensional vector space and let T' : V—V be a linear transformation.

If either T is one-one or T is onto, then T is invertible.

The following are some of the consequences of the rank-nullity theorem. The proof is left as an

exercise for the reader.
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Corollary 4.3.9 The following are equivalent for an m x n real matrix A.

1.

2.

Rank (A4) = k.
There exist exactly k rows of A that are linearly independent.

There exist exactly k columns of A that are linearly independent.

. There is a k x k submatrix of A with non-zero determinant and every (k + 1) x (k 4+ 1) submatrix of

A has zero determinant.
The dimension of the range space of A is k.

There is a subset of R™ consisting of exactly k linearly independent vectors by, bs, ..., by such that
the system Ax = b; for 1 < i < k is consistent.

The dimension of the null space of A =n — k.

Exercise 4.3.10 1. Let T : V—W be a linear transformation.

2.

3.

5.

(a) If V is finite dimensional then show that the null space and the range space of T are also finite

dimensional.
(b) If V and W are both finite dimensional then show that
i if dim(V) < dim(W) then T is onto.
ii. if dim(V') > dim(W) then T is not one-one.

Let A be an m X n real matrix. Then

(a) if n > m, then the system Ax = 0 has infinitely many solutions,

(b) if n < m, then there exists a non-zero vector b = (b1, ba, ..., by,)" such that the system Ax =b

does not have any solution.

Let A be an m x n matrix. Prove that

Row Rank (A) = Column Rank (A).

[Hint: Define Ty : R"—R™ by Ta(v) = Av for allv € R™. Let Row Rank (A) = r. Use Theorem
2.6.1 to show, Ax = 0 has n — r linearly independent solutions. This implies,

v(Ty) =dim({v e R" : T4(v) =0}) =dim{veR": Av=0})=n—r.

Now observe that R(T4) is the linear span of columns of A and use the rank-nullity Theorem 4.3.6
to get the required result.]

. Prove Theorem 2.6.1.

[Hint: Consider the linear system of equation Ax = b with the orders of A,x and b, respectively
as m X n,n x 1 and m x 1. Define a linear transformation T : R*—R™ by T(v) = Av. First
observe that if the solution exists then b is a linear combination of the columns of A and the linear
span of the columns of A give us R(T'). Note that p(A) = column rank(A) = dim(R(T)) = {(say).
Then for part i) one can proceed as follows.

i) Let C;y,Ciy,...,Cy, be the linearly independent columns of A. Then rank(A) < rank([A b))
implies that {C;,, Ci,, ..., Ci,, b} is linearly independent. Hence b ¢ L(C;,,Ci,,...,C;,). Hence,

the system doesn’t have any solution.

On similar lines prove the other two parts.]

Let T, S : V—V be linear transformations with dim(V') = n.
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(a) Show that R(T'+ S) C R(T") + R(S). Deduce that p(T + S) < p(T) + p(S).
Hint: For two subspaces M, N of a vector space V, recall the definition of the vector subspace
M+ N.

(b) Use the above and the rank-nullity Theorem 4.3.6 to prove v(T + S) > v(T) + v(S) — n.

6. Let V be the complex vector space of all complex polynomials of degree at most n. Given k distinct

complex numbers 21, za, . .., 2, we define a linear transformation
T:V—CF by T(P(2)) = (P(21),P(22),...,P(z)).
For each k > 1, determine the dimension of the range space of 7.

7. Let A be an n x n real matrix with A?> = A. Consider the linear transformation T4 : R* — R”,
defined by T4 (v) = Av for all v € R™. Prove that

(a) Ta o Ta = T4 (use the condition A% = A).

(b) N(Ta) N R(Ta) = {0}.
Hint: Let x € N(Ta) N R(T4). This implies Ta(x) =0 and x = Ta(y) for somey € R™. So,

x=Taly) = (TaoTa)(y) =Ta(Ta(y)) = Ta(x) = 0.

(c) R" = N(Ta) + R(Ta).
Hint: Let {v1,...,vi} be a basis of N(Ta). Extend it to get a basis {v1,..., Vi, Vit1,---,Vn}
of R™. Then by Rank-nullity Theorem 4.3.6, {Ta(Vi+1),...,Ta(vn)} is a basis of R(Ta).

4.4 Similarity of Matrices

In the last few sections, the following has been discussed in detail:
Given a finite dimensional vector space V' of dimension n, we fixed an ordered basis B. For any v € V,
we calculated the column vector [v]g, to obtain the coordinates of v with respect to the ordered basis
B. Also, for any linear transformation T : V—V, we got an n x n matrix T'[B, B], the matrix of T" with
respect to the ordered basis B. That is, once an ordered basis of V is fixed, every linear transformation
is represented by a matrix with entries from the scalars.

In this section, we understand the matrix representation of 7" in terms of different bases B; and
By of V. That is, we relate the two n x n matrices T[B1, B1] and T[Bz, Bz]. We start with the following
important theorem. This theorem also enables us to understand WHY THE MATRIX PRODUCT IS DEFINED
SOMEWHAT DIFFERENTLY.

Theorem 4.4.1 (Composition of Linear Transformations) Let V, W and Z be finite dimensional vec-
tor spaces with ordered bases Bi, Bs, B3, respectively. Also, let T : V—W and S : W—Z be linear
transformations. Then the composition map S o T : V—Z is a linear transformation and

(SoT) [Bi,Bs] = S[Bz, B3] T[Bi,Bs).

PROOF. Let By = (uy,us,...,uy,), Ba = (v1,Va,...,vy) and By = (W1, Wa,..., W) be ordered bases
of V,W and Z, respectively. Then

(SoT) (B, Bs] = [[S o T(w)lss, [SoT(uz)lss, -, [S 0T (un)]s,).
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Now for 1 <t <n,

m m

(SOT) (ut) = (Z T[817B2] ]th) - Z(T[Bl,B2])jtS(Vj)

j=1

I
Ms

P
81782] ]tz 82783] kiWk
k=1

<.
Il
—

[
M»@

(> (S[B2, Bs])x; (T[Br, Ba)) j ) wi

j=1

m

>
Il
—

[
M=

(S[B2, B3] T[Bi,B2])ktwk-

So,
[(SoT) (un)lss = ((S[Ba, Bs] T[B1, Ba)e, - - -, (S[Ba, Bs] T[Br, Ba])pe)"-
Hence,
(SoT) By, Bs] = [[(SoT) (u1)ls- -, [(SoT) (un)ls,] = S[Ba, Bs] T[Bu,Ba.
This completes the proof. O

Proposition 4.4.2 Let V' be a finite dimensional vector space and let T',S : V—V be a linear transforma-
tions. Then
v(T)+v(S) > v(ToS) > max{v(T),v(S)}.
PROOF. We first prove the second inequality.
Suppose that v € N(S). Then T o S(v) = T(S(v)) = T(0) = 0. So, N(S) € N(T o S). Therefore,
v(S) <v(ToS).
Suppose dim (V) = n. Then using the rank-nullity theorem, observe that

V(ToS)>v(T)<=n—v(ToS)<n—v(T) <= p(ToS)<p().

So, to complete the proof of the second inequality, we need to show that R(T o S) C R(T'). This is true
as R(S) C V.

We now prove the first inequality.
Let &k = v(S) and let {v1,va,...,vi} be a basis of N(S). Clearly, {vi,va,...,vi} C N(T o S) as
T(0) = 0. We extend it to get a basis {vi,va,..., Vg, uj,ug,...,u} of N(T o S).
Claim: The set {S(uy),S(uz),...,S(ug)} is linearly independent subset of N'(T').
Asuj,ug,...,us € N(T 0 S), the set {S(uy), S(uz),...,S(us)} is a subset of N(T). Let if possible

the given set be linearly dependent. Then there exist non-zero scalars cq, ca, ..., c¢ such that
c1S(u1) =+ CQS(UQ) 4+ 4 CgS(ul) =0.

So, the vector Z ciu; € N(S) and is a linear combination of the basis vectors vy, va, ..., vi of N(S).

Therefore, there ex1st scalars aq, ag, o such that
¢ k
E c;u; = E [67AZN
i=1 i=1

Or equivalently

Zczul—&—z —a;)v; = 0.
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That is, the 0 vector is a non-trivial linear combination of the basis vectors vi,va, ..., Vg, uy, us, ..., Uy
of N(T 0 S). A contradiction.
Thus, the set {S(u1),S(uz),...,S(ue)} is a linearly independent subset of N'(T) and so v(T') > £.
Hence,
v(ToS)=k+¢<v(S)+v(T).
O
Recall from Theorem 4.1.8 that if T is an invertible linear Transformation, then 771 : V—V is a

linear transformation defined by T~!(u) = v whenever T'(v) = u. We now state an important result

about inverse of a linear transformation. The reader is required to supply the proof (use Theorem 4.4.1).

Theorem 4.4.3 (Inverse of a Linear Transformation) Let V' be a finite dimensional vector space with
ordered bases B; and Bsy. Also let T': V——V be an invertible linear transformation. Then the matrix of T'
and T~ are related by

T[B1,Bs) ™t = T 1By, By).

Exercise 4.4.4 For the linear transformations given below, find the matrix T'[8, B].

1. Let B=((1,1,1),(1,—1,1),(1,1,—1)) be an ordered basis of R3. Define T : R®*—R? by T'(1,1,1) =
(1,-1,1), T7(1,-1,1) = (1,1,-1), and T(1,1,—1) = (1,1,1). Is T an invertible linear transforma-
tion? Give reasons.

2. Let B= (1,z,22,2%)) be an ordered basis of P3(R). Define T : P3(R)—P5(R) by

T(1)=1,T(x) =1+ T(2*) = (1 +2)% and T(2®) = (1 + z)>.

Prove that T is an invertible linear transformation. Also, find T~1[B, B].

Let V be a vector space with dim(V) = n. Let By = (uj,us,...,u,) and By = (v1,va,...,v,} be
two ordered bases of V. Recall from Definition 4.1.5 that I : V—V is the identity linear transformation
defined by I(x) = x for every x € V. Suppose x € V with [x|p, = (a1,02,...,0,)" and [x]g, =
(ﬁla 52; e 75n)t'

We now express each vector in By as a linear combination of the vectors from B;. Since v; € V, for
1 <i < n,and B; is a basis of V, we can find scalars a;;,1 < 7,j < n such that

V; = I(Vl) = Zajiuj for all ’L,l S 7 S n.

j=1
Hence, [I(vi)]s, = [Vils, = (a1i,a2i,- -+ ,an;)" and
I[B2,B1] = [[I(v1)lg,: [I(V2)lBys- - [I(Va)]B,]
a1; a2 -+ QAin
@21 Q22 -+ A2p
Anl  An2 Ann

Thus, we have proved the following result.

Theorem 4.4.5 (Change of Basis Theorem) Let V be a finite dimensional vector space with ordered bases
By = (uj,uz,...,u,} and By = (vi,Va,...,v,}. Suppose x € V with x|z, = (a1,a2,...,a,)" and
%]z, = (81,82, --,8n)t Then

[x]|p, = I[B2,B1] [X]B,-
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Equivalently,
aq ain a2 - G| | B
Q2 az1 Q22 - A2p 52
Qp, Anl An2 e Ann Bn

Note: Observe that the identity linear transformation I : V—V defined by I(x) = x for every
x € V is invertible and
I[By, B! = I"YBy, Bo] = IBy, Ba).

Therefore, we also have
(xls, = I[B1, Bs] [x]5, -

Let V be a finite dimensional vector space and let B; and B3 be two ordered bases of V. Let T : V—V

be a linear transformation. We are now in a position to relate the two matrices T'[By, B1] and T'[Bz, Ba].

Theorem 4.4.6 Let V be a finite dimensional vector space and let B; = (uj,us,...,u,) and By =
(v1,va,...,Vy) be two ordered bases of V. Let T : V—V be a linear transformation with B = T'[By, B4]
and C = T'[Bs, Bs] as matrix representations of T in bases B1 and Ba.

Also, let A = [a;;] = I[B2,B1], be the matrix of the identity linear transformation with respect to the
bases By and By. Then BA = AC. Equivalently B = ACA™!.

PRrOOF. For any x € V, we represent [T'(x)]g, in two ways. Using Theorem 4.2.1, the first expression is
[T'(x)]8, = T[B2, Ba] [X]8,- (4.4.1)
Using Theorem 4.4.5, the other expression is
[T(x)]s, = I[By,Bo] [T'(x)]s,

= 1[By,Bo] T[By, B1] [x],
= I[Bl,Bg] T[Bl,Bl] I[Bg,Bl] [X]Bz' (442)

Hence, using (4.4.1) and (4.4.2), we see that for every x € V,
1By, Bo] T(By, B 1[B2, Bi] [x|s, = T[B2, B2] [x]5,-
Since the result is true for all x € V, we get
I[By, Bo] T[By, B1] 1[B2, Bi] = T[Bz, Bs]. (4.4.3)

That is, A"'BA = C or equivalently ACA™! = B. O
Another Proof:
Let B = [b;;] and C' = [¢;;]. Then for 1 <i <mn,

n

J=1 J=1

So, for each 5,1 < j <mn,

T(v;) = TU(vy) =T aryur) = arT(ux)

n

Z akj(z berug) = Z(Z berar;)ue
=1

k=1 £=1 k=1
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and therefore,

> bigak;

kil ayj

Z b2kakj az;
(T(vj)lg, = |F=1 =B

An j

n
> bukag;
k=1 B

Hence T'[Bz, B1] = BA.
Also, for each j,1 < j <n,

T(vj)) = Y cxvi=Y cl(vi) = ei;(O amuy)
k=1 k=1 k=1 ¢=1
= 2 amew)ur
=1 k=1
and so i i
Z A1kCkj
kil c1j
Z A2k Ckj C2j
[T(vi)ls, = |#=1 =A
Z AnkCkj
Lk=1 J
This gives us T'[Bz, B1] = AC. We thus have AC = T[Bs, B1] = BA. [ |

Let V' be a vector space with dim(V') =n, and let T': V—V be a linear transformation. Then for
each ordered basis B of V, we get an n x n matrix T[B, B]. Also, we know that for any vector space we
have infinite number of choices for an ordered basis. So, as we change an ordered basis, the matrix of
the linear transformation changes. Theorem 4.4.6 tells us that all these matrices are related.

Now, let A and B be two n x n matrices such that P~ AP = B for some invertible matrix P. Recall
the linear transformation Ty : R"——R" defined by Ta(x) = Ax for all x € R™. Then we have seen that
if the standard basis of R™ is the ordered basis B, then A = T4[B, B]. Since P is an invertible matrix,
its columns are linearly independent and hence we can take its columns as an ordered basis ;. Then
note that B = T4[B1, B1]. The above observations lead to the following remark and the definition.

Remark 4.4.7 The identity (4.4.3) shows how the matrix representation of a linear transformation T
changes if the ordered basis used to compute the matrix representation is changed. Hence, the matrix
I[By, Ba] is called the By : B2 change of basis matrix.

Definition 4.4.8 (Similar Matrices) Two square matrices B and C of the same order are said to be similar
if there exists a non-singular matrix P such that B = PCP~! or equivalently BP = PC.

Remark 4.4.9 Observe that if A =T[B, 5] then
{S7YAS : S is n x n invertible matrix }

is the set of all matrices that are similar to the given matrix A. Therefore, similar matrices are just

different matrix representations of a single linear transformation.
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Example 4.4.10 1. Consider P2(R), with ordered bases

B = (171+1‘71+5L‘+5L‘2) and By = (1+x—x2,1+2x+x272+x+x2).

Then
l+z—2%p =0-1+2-(1+z)+(=1)- (1 +z+2%) =(0,2,-1),
[1+22+2%5 =(-1)-1+1-(1+2)+1-(1+x+2*) =(-1,1,1)", and
2+z+2%g =1-140-(1+2)+1-(1+z+2%) =(1,0,1)".
Therefore,
I[B2,B1] = [[I(1+z—2%)s,, [I(1+2z+2%)]s, [[(2+z+2)s]
= [14z—2%s,[1+2c+2%]5,[2+z+2°]5,]
0 -1 1
= |2 1 0
-1 1 1

Find the matrices T'[B1, B1] and T[Bz, Bz]. Also verify that
T(Ba, Bo] = I[B1,Bo] T[Bi1,B1] I[B2, Bi]
= I7'[By,B1] T[By, B1] I[Bs, By).

2. Consider two bases B; = ((1,0,0), (1,1,0),(1,1, 1)) and B; = ((1, 1,-1),(1,2,1), (2,1, 1)) of R3,
Suppose T : R3—R3 is a linear transformation defined by

T((x,y,z))z (x+y,x+y+2z,y—z)

Then
0 0 -2 —4/5 1 8/5
TBi,Bi]=1{1 1 4|, and T[By,Bs]=|-2/5 2 9/5
01 0 8/5 0 -1/5

Find I[B1, B2] and verify,
I[B1, B3] T[B1,B1] I[Bs, B1] = TBs, Ba].

Check that,
2 -2 =2
T(By,B1]) I[B2, B1] = I[Ba,B1]| T[B2,B2] = | -2 4 5
2 1 0

Exercise 4.4.11 1. Let V be an n-dimensional vector space and let T : V—V be a linear transformation.
Suppose T has the property that 77"~ # 0 but 7™ = 0.

(a) Then prove that there exists a vector u € V' such that the set
{u,T(u),...,T" *(u)}

is a basis of V.

(b) Let B= (u,T(u),...,T" '(u)). Then prove that

00 0 - 0
[100-~-o]

TB,B =0 1 0 - 0

o0 -~ 1 0
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(c) Let A be an n x n matrix with the property that A"~! # 0 but A" = 0. Then prove that 4 is

similar to the matrix given above.
2. Let T : R3—R3 be a linear transformation given by
T(z,y,2) =(x+y+2z,2—y—3z,2x+ 3y + 2).

Let B be the standard basis and B; = ((17 1,1),(1,-1,1),(1, 172)) be another ordered basis.

(a) Find the matrices T[B, B] and T'[B1, B1].

(b) Find the matrix P such that P~1T[B,B] P = T[By, B1].
3. Let T : R3—R3 be a linear transformation given by

T((z,y,2) = (x, 2 +y,z+y+2)
Let B be the standard basis and B; = ((1,0,0), (1,1,0),(1,1,1)) be another ordered basis.

(a) Find the matrices T'[B, B] and T'[B1, B1].
(b) Find the matrix P such that P~1T[B,B] P = T[B1, B1].

4. Let By = ((1,2,0),(1,3,2),(0,1,3)) and By = ((1,2,1),(0,1,2),(1,4,6)) be two ordered bases of
R3.

a) Find the change of basis matrix P from B; to B.

b) Find the change of basis matrix @) from Bs to Bj.

c) Verify that PQ =1 = QP.

(
(
(
(d

)
)
)
)

Find the change of basis matrix from the standard basis of R? to B;. What do you notice?



Chapter 5

Inner Product Spaces

We had learned that given vectors i and j (which are at an angle of 90°) in a plane, any vector in the
plane is a linear combination of the vectors i and j In this section, we investigate a method by which
any basis of a finite dimensional vector can be transferred to another basis in such a way that the vectors
in the new basis are at an angle of 90° to each other. To do this, we start by defining a notion of INNER
PRODUCT (dot product) in a vector space. This helps us in finding out whether two vectors are at 90°
or not.

5.1 Definition and Basic Properties

In R?, given two vectors x = (21, 22), ¥ = (y1,¥2), we know the inner product x-y = x1y; + T2y2. Note
that for any x,y,z € R? and o € R, this inner product satisfies the conditions

x- (y+az)=x-y+ax-z, x-y=y-x, and x-x>0

and x - x = 0 if and only if x = 0. Thus, we are motivated to define an inner product on an arbitrary

vector space.

Definition 5.1.1 (Inner Product) Let V(IF) be a vector space over F. An inner product over V (FF), denoted
by (, ), is a map,
(,) :VxV—F

such that foru,v,w € V and a,b € F
1. {(au+bv,w) = a{u,w) + b{v, w),
2. (u,v) = (v,u), the complex conjugate of (u,v), and

3. (u,u) > 0 for all u € V and equality holds if and only if u = 0.

Definition 5.1.2 (Inner Product Space) Let V' be a vector space with an inner product ( , ). Then
(V,{(, )) is called an inner product space, in short denoted by 1PS.

Example 5.1.3 The first two examples given below are called the STANDARD INNER PRODUCT or the DOT
PRODUCT on R™ and C", respectively..

1. Let V = R"™ be the real vector space of dimension n. Given two vectors u = (uq,ua,...,u,) and
v = (v1,v9,...,v,) of V, we define

t
(u,v) = urv1 + ugva + - -+ + URY, = UV'.

Verify (, ) is an inner product.

Q7
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2. Let V. = C™ be a complex vector space of dimension n. Then for u = (uy,us,...,u,) and v =
(v1,va,...,vy,) in V, check that

(u,v) = w07 + uglz + - - - + Uy = uV*

is an inner product.

4 -1
3. Let V=R2% and let A = L9 ] . Define (x,y) = xAy!. Check that (, ) is an inner product.

Hint: Note that xAy' = 4x1y1 — T1y2 — Toy1 + 2T2%o.

4. let x = (x1,72,73), ¥ = (y1,¥2,y3) € R3., Show that (x,y) = 10z1y1 + 3x1y2 + 322y + 272y2 +
Toy3 + T3y2 + w3y3 is an inner product in R3*(R).

5. Consider the real vector space R?. In this example, we define three products that satisfy two conditions
out of the three conditions for an inner product. Hence the three products are not inner products.

(a) Define (x,y) = {(x1,22),(y1,¥2)) = x1y1. Then it is easy to verify that the third condition is
not valid whereas the first two conditions are valid.

(b) Define (x,y) = ((21,22), (y1,¥2)) = x} + y} + 23 + y3. Then it is easy to verify that the first
condition is not valid whereas the second and third conditions are valid.

(c) Define (x,y) = {(@1,22), (y1,y2)) = 21y + x2y5. Then it is easy to verify that the second
condition is not valid whereas the first and third conditions are valid.

t

Remark 5.1.4 Note that in parts 1 and 2 of Example 5.1.3, the inner products are uv' and uv”*,

respectively. This occurs because the vectors u and v are row vectors. In general, u and v are taken as

t

column vectors and hence one uses the notation u‘v or u*v.

Exercise 5.1.5 Verify that inner products defined in parts 3 and 4 of Example 5.1.3, are indeed inner products.

Definition 5.1.6 (Length/Norm of a Vector) For u € V, we define the length (norm) of u, denoted ||u||,
by |[u|| = /(u, u), the positive square root.

A very useful and a fundamental inequality concerning the inner product is due to Cauchy and

Schwartz. The next theorem gives the statement and a proof of this inequality.

Theorem 5.1.7 (Cauchy-Schwartz inequality) Let V' (F) be an inner product space. Then for any u,v €
14
[(w, v)[ < [lul| []v].

The equality holds if and only if the vectors u and v are linearly dependent. Further, if u # 0, then
u, u
= (v, —)—-.
[Jall* {lull
PrOOF. If u = 0, then the inequality holds. Let u # 0. Note that (Au+ v, \u+v) > 0 for all A € F.

(v, w)

In particular, for A = —W, we get

0 < (Au+v,du+v)
= Muf? + Mu,v) +Av,u) + |v]?

_ <V7u> <V7u> ||u||2 _
[al® ful?
(v, u)?
= IvIP =
[[al[?

(v,u) (v
CEARMANE

(v,u) + [|v]|?
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Or, in other words
(v, u) [ < [luf?[|v]?

and the proof of the inequality is over.
(v,u)

[l

Observe that if u # 0 then the equality holds if and only of Au +v = 0 for A = — That is, u

and v are linearly dependent. We leave it for the reader to prove

u u
= (v, — )
"afl” flull

Definition 5.1.8 (Angle between two vectors) Let V' be a real vector space. Then for every u,v € V, by
the Cauchy-Schwartz inequality, we have
(u, v)

1< ———= <1.
([l [[v]]

We know that cos : [0,7] — [—1, 1] is an one-one and onto function. Therefore, for every real number

(u,v)

, there exists a unique 0, 0 < 0 < 7, such that

[[all vl
cosl — M
[[all {lvl]
u
1. The real number 6 with 0 < 6 < 7 and satisfying cosf = ﬁ is called the angle between the two
ul| ||v

vectors u and v in V.
2. The vectors u and v in V are said to be orthogonal if (u,v) = 0.

3. A set of vectors {uy,us,...,u,} is called mutually orthogonal if (u;,u;) =0 forall 1 <i#j <n.

Exercise 5.1.9 1. Let {e1,eq,...,e,} be the standard basis of R”. Then prove that with respect to the
standard inner product on R™, the vectors e; satisfy the following:

(@) llei]l=1for 1 <i<n.

(b) (e;,e;) =0forl <i##j<mn.
2. Recall the following inner product on R? : for x = (21, 22)! and y = (y1,¥2)%,
(x,y) =4z1y1 — T1y2 — T2y1 + 23292

(a) Find the angle between the vectors e; = (1,0)* and ez = (0, 1)".
(b) Let u= (1,0)!. Find v € R? such that (v,u) = 0.

(c) Find two vectors x,y € R?, such that ||x|| = ||y]| = 1 and (x,y) = 0.
3. Find an inner product in R? such that the following conditions hold:
[(L2)[ =12 -1l =1, and ((1,2), (2,-1))=0.

a b

c

[Hint: Consider a symmetric matrizc A = . Define (x,y) = y'Ax and solve a system of 3

equations for the unknowns a,b,c.]
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4. Let V be a complex vector space with dim(V') = n. Fix an ordered basis B = (uj, us,...,u,). Define
a map
(,):VxV —C by (u,v) Zall
whenever [u]g = (a1,a2,...,a,)" and [v]g = (b1,ba,...,b,)t. Show that the above defined map is

10.

indeed an inner product.
Let x = (Il,.’L‘Q,.’l}g), y = (y17y27y3) € RB' Show that
(x,y) = 102191 + 3w1Yy2 + 322y1 + 2722 + T2y3 + T3Y2 + T3Y3

is an inner product in R3(R). With respect to this inner product, find the angle between the vectors
(1,1,1) and (2,-5,2).

Consider the set M,,«,(R) of all real square matrices of order n. For A, B € M, x,(R) we define
(A, B) = tr(AB?). Then
(A+ B,C) =tr((A+ B)C") = tr(AC") + tr(BC") = (A,C) + (B, C).
(A,B) = tr(AB") = tr( (AB")") = tr(BA") = (B, A).
Let A = (a;j). Then
(A, A) = tr(AAY) = zn: AAY) zn: zn: aijai; = zn: Xn:a?j
i=1 i=1 j=1 i=1 j=1

and therefore, (A, A) > 0 for all non-zero matrices A. So, it is clear that (A, B) is an inner product on
Myen(R).

. Let V' be the real vector space of all continuous functions with domain [—27,27]. That is, V =

C[—2m, 2x]. Then show that V is an inner product space with inner product f_ll f(z)g(x)dx.

For different values of m and n, find the angle between the functions cos(mz) and sin(nx).
Let V' be an inner product space. Prove that

lu+v| < |ul|+]||v] forevery u,veV.
This inequality is called the TRIANGLE INEQUALITY.

Let z1, 22, ..., 2, € C. Use the Cauchy-Schwartz inequality to prove that

o1t 22 2l < VAP [P )
When does the equality hold?
Let x,y € R™. Observe that (x,y) = (y,x). Hence or otherwise prove the following:

(a) (x,y) =0« ||x—yl|?> =|x/>+ |lyl|*>, (Thisis called PYTHAGORAS THEOREM).

(b) |Ix|l =yl <= (x+y,x—y) =0, (xandy form adjacent sides of a rhombus as the diagonals
x +y and x —y are orthogonal).

(©) IIx+yl?+lIx—yl? =2|Ix[|> + 2|lyl|>, (This is called the PARALLELOGRAM LAW).

(d) 4(x,y) = [|x +y|> — |[x — y||? (This is called the POLARISATION IDENTITY).

Remark 5.1.10 i. Suppose the norm of a vector is given. Then, the polarisation identity

can be used to define an inner product.
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ii. Observe that if (x,y) = 0 then the parallelogram spanned by the vectors x and y is a
rectangle. The above equality tells us that the lengths of the two diagonals are equal.

Are these results true if x,y € C*(C)?
11. Let x,y € C*(C). Prove that
(@) 4(xy) = Ix+yl? = lIx = y|I* +illx + iyl —ilx — iy]*.
(b) If x # 0 then ||x +ix||* = ||x||? + ||ix||?, even though (x,ix) # 0.
(c) I [x+yl? = [Ix]* + lyll* and |x +iy||* = ||x||* + [liy]|* then show that (x,y) = 0.

12. Let V' be an n-dimensional inner product space, with an inner product (, ). Let u € V be a fixed
vector with ||u|| = 1. Then give reasons for the following statements.

(a) Let St ={v eV : (v,u) =0}. Then S is a subspace of V' of dimension n — 1.
(b) Let 0w eFandlet S={veV : (v,u) =a}. Then S is not a subspace of V.

(c) For any v € S, there exists a vector vy € S+, such that v = v, + au.

Theorem 5.1.11 Let V' be an inner product space. Let {uj,us,...,u,} be a set of non-zero, mutually
orthogonal vectors of V.

1. Then the set {uj,us,...,u,} is linearly independent.
n n

2. |1 32 eqwi|? = 30 il i
i=1 i=1

3. Let dim(V') = n and also let ||u;|| =1 for i = 1,2,...,n. Then for any v € V,

n

v = Z(V,ui>ui.

i=1
In particular, (v,u;) =0forall i =1,2,...,nif and only if v=0.
PROOF. Consider the set of non-zero, mutually orthogonal vectors {uy, ug, ..., u,}. Suppose there exist

scalars cq, ¢, ..., ¢, not all zero, such that
ciu] +coug + - -+ cpuy = 0.

Then for 1 < i < n, we have
n

0=(0,u;) = (cru; + couz + - - + cpuy, W) = ch<ujaui> =G
j=1

as (u;,u;) = 0 for all j # ¢ and (u;,u;) = 1. This gives a contradiction to our assumption that some of

the ¢;’s are non-zero. This establishes the linear independence of a set of non-zero, mutually orthogonal

vectors.

0 it
iz ] for 1 <1i,j5 < n, we have

For the second part, using (u;, u;) = { P ifi=g
i =

n n n n n
DITTVCEEIN SETTH SPRTES SRR S
=1 =1 =1 =1 j=1
n n

n
= Z Q; Za_j<ui; u;) = Zaia_i<ui; u;)
=1 i=1

=1

n
= o[l
=1
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For the third part, observe from the first part, the linear independence of the non-zero mutually
orthogonal vectors uj,ug,...,u,. Since dim(V) = n, they form a basis of V. Thus, for every vector

v € V, there exist scalars «;, 1 <1i < n, such that v = Z?Zl a;u,. Hence,
n n

(viu;) = <Z aiug, uy) = Zai<uivuj> = Q.
i=1 i=1

Therefore, we have obtained the required result. O

Definition 5.1.12 (Orthonormal Set) Let V' be an inner product space. A set of non-zero, mutually or-
thogonal vectors {vi,va,...,v,} in V is called an orthonormal set if ||v;|| =1 fori=1,2,...,n.
If the set {v1,va,...,v,} is also a basis of V, then the set of vectors {vi,va,...,v,} is called an

orthonormal basis of V.

Example 5.1.13 1. Consider the vector space R? with the standard inner product. Then the standard
1 1
ordered basis B = ((1,0),(0,1)) is an orthonormal set. Also, the basis By = (—(1,1), —(1, -1
((1,0),(0,1)) 1 (\/5()\/5( )

is an orthonormal set.

2. Let R™ be endowed with the standard inner product. Then by Exercise 5.1.9.1, the standard ordered

basis (e1,ea,...,€e,) is an orthonormal set.

In view of Theorem 5.1.11, we inquire into the question of extracting an orthonormal basis from
a given basis. In the next section, we describe a process (called the Gram-Schmidt Orthogonalisation

process) that generates an orthonormal set from a given set containing finitely many vectors.

Remark 5.1.14 The last part of the above theorem can be rephrased as “suppose {vi,va,...,v,} is
an orthonormal basis of an inner product space V. Then for eachu € V the numbers (u,v;) for1 <i<mn
are the coordinates of u with respect to the above basis”.

That is, let B = (v1,Vva,...,V,) be an ordered basis. Then for any u € V,

[uls = ((u,v1), (u,va),..., u,v,))"

5.2 Gram-Schmidt Orthogonalisation Process

Let V be a finite dimensional inner product space. Suppose uj, us,...,u, is a linearly independent subset
of V. Then the Gram-Schmidt orthogonalisation process uses the vectors uj,us,...,u, to construct
new vectors vi,va,...,V, such that (v;,v;) = 0 for ¢ # j, ||v;]| = 1 and Span {uj,us,...,u;} =
Span {vi,va,...,v;} for i =1,2,...,n. This process proceeds with the following idea.

Suppose we are given two vectors u and v in a plane. If we want to get vectors z and y such that z
is a unit vector in the direction of u and y is a unit vector perpendicular to z, then they can be obtained
in the following way:

Take the first vector z = —. Let § be the angle between the vectors u and v. Then cos(f) = (u, v)

[[uf
Defined o = ||v|| cos(f) = {u, v)

lull floll

] = (z,v). Then w = v — a z is a vector perpendicular to the unit
u

vector z, as we have removed the component of z from v. So, the vectors that we are interested in are
w

zandy = —.

[wl

This idea is used to give the Gram-Schmidt Orthogonalization process which we now describe.
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Figure 5.1: Gram-Schmidt Process

Theorem 5.2.1 (Gram-Schmidt Orthogonalization Process) Let V' be an inner product space. Suppose
{uy,us,...,u,} is a set of linearly independent vectors of V. Then there exists a set {vy,va,...,v,} of
vectors of V satisfying the following:

1. ||vs]| =1for 1 <i<mn,

2. (vi,vj)=0for1<i,5<m,i%#jand

3. L(vy,va,...,v;) = L(uj,ug,...,u;) for 1 <i<n.
PROOF. We successively define the vectors vi,va,..., v, as follows.
up
V] = ——.
[y |
W2
Calculate wo = ug — (ug, vi)vy, and let vo = —=—.
[[wall
. W3
Obtain w3 = ug — (us, vi)vy — (us, va)va, and let vg = m
w3
In general, if vi,va,v3,vy,...,v;_1 are already obtained, we compute
Wi = u; — (U, v1)vi — (i, Vo)ve — -+ — (03, Vi_1) Vi1, (5.2.1)
and define
W
v, = ——.
[[wi

We prove the theorem by induction on n, the number of linearly independent vectors.
u
—L_ Since uy # 0, vi # 0 and

flad ||

For n = 1, we have vy =

u; u; (ul,u1>
||V1||2 = (vi,v1) = = =1.
’ ]| [[u ] [ |2

Hence, the result holds for n = 1.
Let the result hold for all ¥ < n — 1. That is, suppose we are given any set of k, 1 < k <n—1
linearly independent vectors {uy, us,...,u;} of V. Then by the inductive assumption, there exists a set

{v1,va,..., v} of vectors satisfying the following:
1. ||vi]| =1for 1 <i<k,

2. (v4,vj)=0for 1 <i#j<k, and
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3. L(vy,va,...,v;) = L(ug,ug,...,u;) for 1 <i<k.

Now, let us assume that we are given a set of n linearly independent vectors {uj,us,...,u,} of V.

Then by the inductive assumption, we already have vectors vi,vs,...,Vv,_1 satisfying
1. Jvi]=1for1<i<n-1,
2. (vi,vj)=0for1<i#j<n-1,and
3. L(vy,va,...,v;) = L(ug,ug,...,u;) for 1 <i<n-—1.

Using (5.2.1), we define

W, = Uy — (W, Vi)Vl — (Wp, Vo)V — -+ — (Upy, Vi1 ) Vi1 (5.2.2)
w
We first show that w,, & L(v1,Va,...,v,_1). This will also imply that w,, # 0 and hence v,, = ﬁ
Wn
is well defined.
On the contrary, assume that w,, € L(vi,va,...,v,_1). Then there exist scalars aq, as, ..., @1
such that
W, =Q1V] + Ve + -+ Qp_1Vp_1.
So, by (5.2.2)
u, = (061 + <un,V1>)V1 + (042 + <Un,V2>)V2 +e 4+ ((Oén—l + <Un,Vn—1>)Vn—1-
Thus, by the third induction assumption,
u, € L(Vl, Vo,... aVn—l) = L(ul, us,..., un_l).
This gives a contradiction to the given assumption that the set of vectors {uj,us,...,u,} is linear
independent.
W

So, w,, # 0. Define v,, =

Twall Then ||v,|| = 1. Also, it can be easily verified that (v,,,v;) =0 for
Wn

1 <i<n—1. Hence, by the principle of mathematical induction, the proof of the theorem is complete.
O

We illustrate the Gram-Schmidt process by the following example.

Example 5.2.2 Let {(1,-1,1,1),(1,0,1,0),(0,1,0,1)} be a linearly independent set in R*(R). Find an
orthonormal set {vy,va,v3} such that L( (1,-1,1,1),(1,0,1,0),(0,1,0,1) ) = L(v1,va, V3).

1,0,1
Solution: Let u; = (1,0,1,0). Define v; = M Let up = (0,1,0,1). Then

V2

1,0,1,0
wo = (0,1,0,1) — ((0,1,0, 1), M>V1 =(0,1,0,1).
0,1,0,1
Hence, vy = M Let ug = (1,—1,1,1). Then
V2
(1,0,1,0) (0,1,0,1)

= (1,-1,1,1) = ((1,-1,1,1), ==y (1, —1,1, 1),
w3 ( ) —(( ) NG v — (( ) NG )V2

= (0,-1,0,1)
—-1,0,1

75
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Remark 5.2.3 1. Let {uj,ua,...,u;} be any basis of a k-dimensional subspace W of R™. Then by
Gram-Schmidt orthogonalisation process, we get an orthonormal set {vi,va,...,vi} C R™ with
W = L(v1,va,...,Vg), and for 1 < i <k,

L(Vl,VQ,.. .,Vl') = L(ul,ug,.. .,ul-).

2. Suppose we are given a set of n vectors, {uj,uz,...,u,} of V that are linearly dependent. Then
by Corollary 3.2.5, there exists a smallest k, 2 < k < n such that

L(ulau27 . .,Uk) = L(u17u27 v 7uk—l)-

We claim that in this case, wj = 0.

Since, we have chosen the smallest k satisfying
L(u17 uz, ... ;ui) = L(U.l, uz, ... Jui—1)7

for 2 < i < n, the set {uj,us,...,ux_1} is linearly independent (use Corollary 3.2.5). So, by

Theorem 5.2.1, there exists an orthonormal set {v1,va,...,Vi_1} such that
L(uy,ug,...,up_1) = L(vi, Ve, ..., VE_1).
Asuy € L(v1,va,...,Vk_1), by Remark 5.1.14
u, = (g, vi)vy + (ug, vo)va + - - + (W, Vi—1) V1.

So, by definition of wy, wyi = 0.

Therefore, in this case, we can continue with the Gram-Schmidt process by replacing uy by uj41.

3. Let S be a countably infinite set of linearly independent vectors. Then one can apply the Gram-

Schmidt process to get a countably infinite orthonormal set.

4. Let {v1,va,...,vg} be an orthonormal subset of R". Let B = (e1,es,...,e,) be the standard
ordered basis of R". Then there exist real numbers «;;, 1 <i <k, 1 < j <n such that

t
[Vils = (01, a2iy - -y )"
Let A =[vy,va,...,vg]. Then in the ordered basis B, we have
a1 Q12 o Qg
Q1 Q22 - Q2k
A p—
Qn1  Qp2 - Qnk

is an n X k matrix.

Also, observe that the conditions ||v;|| =1 and (v;,v;) =0 for 1 <i# j < n, implies that

L= |[vill = [Ivill* = (vi, vi) = 3 o,
a (5.2.3)

n
and 0= (v;,v;) =Y asa;.
s=1
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Note that,
-Vﬁ [Vl,Vz,...,Vk] ||V1||2 <V17V2> <V17Vk>
. v (va,v1) lval® o (va,vi)
A4 = | _
Lvi (Vi,vi) (v, va) e [lve?
1 0 0
0 1 0
= , = I.
0 0 1

Or using (5.2.3), in the language of matrices, we get

i1 21 e Qnl aq1 a2 e aik

¢ Q12 (22 e Qan2 Q21 Q22 e Q2
ATA=] | . . . . .| = Ik

arg Qo o Qnk Qp1 Qp2 - Qnk

Perhaps the readers must have noticed that the inverse of A is its transpose. Such matrices are called
orthogonal matrices and they have a special role to play.

Definition 5.2.4 (Orthogonal Matrix) A n x n real matrix A is said to be an orthogonal matrix if A A* =
AtA =1,.

It is worthwhile to solve the following exercises.

Exercise 5.2.5 1. Let A and B be two n x n orthogonal matrices. Then prove that AB and BA are
both orthogonal matrices.

2. Let A be an n x n orthogonal matrix. Then prove that

a) the rows of A form an orthonormal basis of R".

(a)

(b) the columns of A form an orthonormal basis of R™.
(c) for any two vectors x,y € R"*1 (Ax, Ay) = (x,y).
(d)

d) for any vector x € R"*!, || Ax|| = [|x]|.

3. Let {uj,us,...,u,} be an orthonormal basis of R™. Let B = (e, es,...,e,) be the standard basis of
R™. Construct an n x n matrix A by

aix a2 - A1n

a1 Q22 -+ A2n
A= [ulau27"'aun] =

ap1  QAp2 - Gnn

where

n
u; = E aje;, for 1 <i<n.
Jj=1

Prove that A*A = I,,. Hence deduce that A is an orthogonal matrix.

4. Let A be an n x n upper triangular matrix. If A is also an orthogonal matrix, then prove that A = I,,.
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Theorem 5.2.6 (QR Decomposition) Let A be a square matrix of order n. Then there exist matrices Q
and R such that @ is orthogonal and R is upper triangular with A = QR.
In case, A is non-singular, the diagonal entries of R can be chosen to be positive. Also, in this case, the

decomposition is unique.

PrOOF. We prove the theorem when A is non-singular. The proof for the singular case is left as an

exercise.
Let the columns of A be x1,Xa,...,X,. The Gram-Schmidt orthogonalisation process applied to the
vectors xi,Xa, ..., X, gives the vectors uj, us, ..., u, satisfying
L(uy,us,...,u;)) =1L ey X
(g, w0) = Lloxn oo i)y Lo g ooy (5.2.4)
”uiH =1, <ui=uj> =0,
Now, consider the ordered basis B = (uj, us, ..., u,). From (5.2.4), for 1 < i < n, we have L(uj,us,...,u;) =
L(x1,X2,...,X;). So, we can find scalars a;;,1 < j <1 such that
X; = QU1 + QoiUg + - - + iy = [(Oém e, 0.0 O)t}g' (5.2.5)
Let @ = [u1,ug,...,u,]. Then by Exercise 5.2.5.3, ) is an orthogonal matrix. We now define an n x n
upper triangular matrix R by
Qi1 g2t Qap
0 @ - a
R= .
0 0 nn
By using (5.2.5), we get
[0411 alp e oy
0 a@p - aa
QR = [uj,ug,...,u,)
0 0 - ap]
n -
= [04111117 Qi2u; + oy, ..., Zamui
i=1 -
= [x1,X2,...,X,] = A.

Thus, we see that A = QR, where @ is an orthogonal matrix (see Remark 5.2.3.4) and R is an upper
triangular matrix.

The proof doesn’t guarantee that for 1 < ¢ < n, ay; is positive. But this can be achieved by replacing
the vector u; by —u; whenever «;; is negative.

Uniqueness: suppose Q1 R; = Q2Rs then Q;lQl = RgRl_l. Observe the following properties of

upper triangular matrices.
1. The inverse of an upper triangular matrix is also an upper triangular matrix, and
2. product of upper triangular matrices is also upper triangular.

Thus the matrix RgRl_1 is an upper triangular matrix. Also, by Exercise 5.2.5.1, the matrix Q;lQl is
an orthogonal matrix. Hence, by Exercise 5.2.5.4, R2R1_1 = I,,. So, Ry = R; and therefore Q2 = Q1. O

Suppose we have matrix A = [x1,Xa2, ..., X} of dimension n x k with rank (A) = r. Then by Remark

5.2.3.2, the application of the Gram-Schmidt orthogonalisation process yields a set {uj,uz,...,u,} of
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orthonormal vectors of R™. In this case, for each i, 1 < i < r, we have
L(ui,ug,...,u;) = L(x1,X2,...,X;), forsome j, i <j<k.
Hence, proceeding on the lines of the above theorem, we have the following result.

Theorem 5.2.7 (Generalised QR Decomposition) Let A be an n x k matrix of rank . Then A = QR,
where

1. Qis an n x r matrix with Q*Q = I,.. That is, the columns of ) form an orthonormal set,
2. If @ =[uy,ug,...,u,], then L(uy,us,...,u,.) = L(x1,X2,...,Xk), and

3. Ris an r x k matrix with rank (R) = r.

10 1 2

01 -1 1 , . :
Example 5.2.8 1. Let A = Lo 1 1l Find an orthogonal matrix @ and an upper triangular

01 1 1

matrix R such that A = QR.

Solution: From Example 5.2.2, we know that

1 1
vi =—=(1,0,1,0), vo = —
1 ( )s V2 7

1
7 (0,-1,0,1). (5.2.6)

0,1,0,1), vy = —
( ) 3 \/5
We now compute w. If we denote uy = (2,1,1,1)" then by the Gram-Schmidt process,

ws = ug— (ug,vi)vi — (W, v2)va — (U4, v3) Vs

1
= 5(170, —1,0)". (5.2.7)

Thus, using (5.2.6) and (5.2.7), we get

1 1
VR
0 = =% o0
Q= [Vl,Vz,V3,V4} =1 \65 ‘65 1
V2 L V2
0 5 U 0
and
3
V2 oo v2 g
0 V2 0 V2
R:
0 0 V2 0
-1
0 0 0 7
The readers are advised to check that A = QR is indeed correct.
1 1 1 o0
-1 0 -2 1 . . . . .
2. Let A= L1 1 o . Find a 4 x 3 matrix Q satisfying Q'Q = I3 and an upper triangular matrix
1 0 2 1

R such that A = QR.

Solution: Let us apply the Gram Schmidt orthogonalisation to the columns of A. Or equivalently to the
rows of A*. So, we need to apply the process to the subset {(1,—1,1,1),(1,0,1,0),(1,-2,1,2),(0,1,0,1)}
of R%.
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Let uy = (1,—1,1,1). Define v = % Let us = (1,0,1,0). Then

1
Wo = (170, 170) — <u27V1>V1 = (1,07 1,0) — Vi = 5(1, 1, 1, —1).

(17 17 17 _1)

Hence, vo = 5

. Let us = (1,-2,1,2). Then
w3 = uz — (u3,v1)vi — (u3, ve)ve = uz — 3vy + vy = 0.
So, we again take uz = (0,1,0,1). Then

W3 = U3 — <U3,V1>V1 - <U3,V2>V2 = us — 0V1 - OV2 = us.

(0,1,0,1)

0
So, v3 = ~22"2 Hence,
V2

1 1
L
é i 1 2 1 3 0

Q = [v1,Vva,v3] = i i ‘65 ,and R=10 1 -1 O
I 00 0 V2
2 2 s

The readers are advised to check the following:
(a) rank (A) =3,
(b) A= QR with Q'Q = I3, and
(c) R a3 x4 upper triangular matrix with rank (R) = 3.

Exercise 5.2.9 1. Determine an orthonormal basis of R* containing the vectors (1, —2,1,3) and (2,1, -3, 1).

2.

Prove that the polynomials 1, x, %x2 — %, %x?’ - %x form an orthogonal set of functions in the in-

ner product space C[—1,1] with the inner product (f,g) = f_llf(t)ﬁdt. Find the corresponding
functions, f(z) with || f(z)| = 1.

. Consider the vector space C[—m, 7] with the standard inner product defined in the above exercise. Find

an orthonormal basis for the subspace spanned by x, sinz and sin(z + 1).

. Let M be a subspace of R™ and dim M = m. A vector x € R" is said to be orthogonal to M if

(x,y) =0 for every y € M.

(a) How many linearly independent vectors can be orthogonal to M?
(b) If M = {(x1,22,73) € R®: 21 + 29 + x3 = 0}, determine a maximal set of linearly independent

vectors orthogonal to M in R3.

Determine an orthogonal basis of vector subspace spanned by
{(1,1,0,1),(-1,1,1,-1),(0,2,1,0),(1,0,0,0)} in R%.

Let S ={(1,1,1,1),(1,2,0,1),(2,2,4,0)}. Find an orthonormal basis of L(S) in R*.

Let R™ be endowed with the standard inner product. Suppose we have a vector x* = (z1,22,...,7,) €
R™, with ||x|| = 1. Then prove the following:

(a) the set {x} can always be extended to form an orthonormal basis of R™.

(b) Let this basis be {x,x2,...,%,}. Suppose B = (e1,ea,...,e,) is the standard basis of R". Let

A= |x]g, x2]Bs ---, [xn]lg]. Then prove that A is an orthogonal matrix.

Let v,w € R™,n > 1 with |lu|| = ||w]|| = 1. Prove that there exists an orthogonal matrix A such that
Av = w. Prove also that A can be chosen such that det(A) = 1.
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5.3 Orthogonal Projections and Applications

Recall that given a k-dimensional vector subspace of a vector space V of dimension n, one can always
find an (n — k)-dimensional vector subspace Wy of V' (see Exercise 3.3.19.9) satisfying

W4+Wo=V and WnW,={0}.

The subspace Wy is called the complementary subspace of W in V. We now define an important class of

linear transformations on an inner product space, called orthogonal projections.

Definition 5.3.1 (Projection Operator) Let V' be an n-dimensional vector space and let W be a k-
dimensional subspace of V. Let W, be a complement of W in V. Then we define a map Py : V — V
by

Py (v) =w, whenever v=w+wq, we W, wyg e Wj.

The map Py is called the projection of V onto W along Wj.

Remark 5.3.2 The map P is well defined due to the following reasons:
1. W+ Wy =V implies that for every v € V, we can find w € W and wyg € Wy such that v =w+ wy.
2. W N W,y = {0} implies that the expression v = w + wq is unique for every v € V.

The next proposition states that the map defined above is a linear transformation from V to V. We

omit the proof, as it follows directly from the above remarks.
Proposition 5.3.3 The map Py : V — V defined above is a linear transformation.

Example 5.3.4 Let V=R3 and W = {(z,y,2) e R®: 2 +y — 2 = 0}.

1. Let Wy = L( (1,2,2) ). Then W N Wy = {0} and W + W = R3. Also, for any vector (x,y,2) € R?,

note that (z,y, z) = w + wg, where
w=(z—-y,2z—-2x—y,3z2— 2z —2y), and wo=(x+y—2)(1,2,2).

So, by definition,

0 -1 1] [z
Py ((z,y,2) = (2 —y,22 =22 —y,32 =22 —2y) = | -2 —1 2| |y
—2 -2 3| |z

2. Let Wy = L((1,1,1) ). Then W N Wy = {0} and W + W, = R3. Also, for any vector (x,y, z) € R3,
note that (z,y, z) = w 4+ wg, where

w=(z—-y,z—z,2z2—x—y), and wo= (z+y—2)(1,1,1).

So, by definition,

0 -1 1
Pw((2,y,2))=(z—y,z—2,22 -~z —y)= |-1 0 1
-1 -1 2] |2

Remark 5.3.5 1. The projection map Py depends on the complementary subspace Wj.

2. Observe that for a fixed subspace W, there are infinitely many choices for the complementary
subspace Wj.
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3. It will be shown later that if V' is an inner product space with inner product, ( , ), then the subspace
W is unique if we put an additional condition that Wo ={v €V :(v,w) =0 forall we W}.

We now prove some basic properties about projection maps.

Theorem 5.3.6 Let W and W, be complementary subspaces of a vector space V. Let Py : V. — V be a
projection operator of V onto W along Wy. Then

1. the null space of Py, N(Pw)={v eV :Py(v)=0}=W,.
2. the range space of Py, R(Pw)={Pw(v):veV}=W.
3. P%, = Pyw. The condition P3, = Py is equivalent to Py (I — Pw) =0 = (I — Pw)Pw.

PROOF. We only prove the first part of the theorem.

Let wo € Wy. Then wg = 0 + wq for 0 € W. So, by definition, P(wg) = 0. Hence, Wy C N (Pw ).
Also, for any v € V, let Py (v) = 0 with v = w + wq for some wg € Wy and w € W. Then by

definition 0 = Py (v) = w. That is, w = 0 and v = wg. Thus, v € Wy. Hence N (Py ) = Wj. O

Exercise 5.3.7 1. Let A be an n x n real matrix with A2 = A. Consider the linear transformation
T4 :R* — R™, defined by T'4(v) = Av for all v.€ R™. Prove that
(a) TaoTa =Ta (use the condition A% = A).
(b) N(Ta) NR(Ta) = {0}.
Hint: Let x € N(Ta) NR(Ta). This implies T4(x) = 0 and x = Ta(y) for somey € R™. So,
x=Ta(y) = (TaoTa)(y) = Ta(Taly)) = Ta(x) = 0.

(c) R" = N(Ta) + R(Ta).
Hint: Let {v1,...,vi} be a basis of N(Ta). Extend it to get a basis {v1,..., Vi, Vit1,---,Vn}
of R™. Then by Rank-nullity Theorem 4.3.6, {Ta(Vit1),...,Ta(vn)} is a basis of R(Ta).

(d) Define W = R(T4) and Wy = N(T4). Then T4 is a projection operator of R™ onto W along
Wo.

Recall that the first three parts of this exercise was also given in Exercise 4.3.10.7.

2. Find all 2 x 2 real matrices A such that A2 = A. Hence or otherwise, determine all projection operators
of R2,

The next result uses the Gram-Schmidt orthogonalisation process to get the complementary subspace
in such a way that the vectors in different subspaces are orthogonal.

Definition 5.3.8 (Orthogonal Subspace of a Set) Let V be an inner product space. Let S be a non-empty
subset of V. We define

St={veV :(v,s)=0forallsc S}
Example 5.3.9 Let V =R.
1. S=1{0}. Then St =R.
2. S =R, Then S+ = {0}.

3. Let S be any subset of R containing a non-zero real number. Then S+ = {0}.
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Theorem 5.3.10 Let S be a subset of a finite dimensional inner product space V, with inner product (, ).
Then

1. St is a subspace of V.

2. Let S be equal to a subspace W. Then the subspaces W and W+ are complementary. Moreover, if
wEW and u € W+, then (u,w) =0and V=W + W+,

PROOF. We leave the prove of the first part for the reader. The prove of the second part is as follows:
Let dim(V) = n and dim(W) = k. Let {w1,wa,..., W} be a basis of W. By Gram-Schmidt orthogo-

nalisation process, we get an orthonormal basis, say, {v1,va,...,vg} of W. Then, for any v € V,
k
v — Z(v,vﬁvi cw.
i=1

So, V.C W+ W+, Also, for any v € WNW+, by definition of W+, 0= (v,v) = ||v|%. So, v = 0. That
is, W N W+ = {0}. O

Definition 5.3.11 (Orthogonal Complement) Let W be a subspace of a vector space V. The subspace
W is called the orthogonal complement of W in V.

Exercise 5.3.12 1. Let W = {(z,y,2) € R® : x + y + z = 0}. Find W+ with respect to the standard
inner product.
2. Let W be a subspace of a finite dimensional inner product space V. Prove that (W4)t = W.

3. Let V be the vector space of all n x n real matrices. Then Exercise5.1.9.6 shows that V is a real
inner product space with the inner product given by (A, B) = tr(AB?). If W is the subspace given by
W={AeV: A = A}, determine W+.

Definition 5.3.13 (Orthogonal Projection) Let W be a subspace of a finite dimensional inner product
space V, with inner product (, ). Let W+ be the orthogonal complement of W in V. Define Py : V — V
by

Py (v) =w where v=w+u, with we W, and ue W+.

Then Py is called the orthogonal projection of V onto W along W+.

Definition 5.3.14 (Self-Adjoint Transformation/Operator) Let V be an inner product space with inner
product (, ). A linear transformation T': V. — V is called a self-adjoint operator if (T'(v),u) = (v,T(u))

for every u,v e V.

Example 5.3.15 1. Let A be an nxn real symmetric matrix. That is, A" = A. Then show that the linear
transformation T4 : R™ — R™ defined by T'a(x) = Ax for every x! € R" is a self-adjoint operator.
Solution: By definition, for every x!, y* € R™,

(Ta(x),y) = (¥)'Ax = (y)'A'x = (Ay)'x = (x, Ta(y))-
Hence, the result follows.

2. Let A be an n x n Hermitian matrix, that is, A* = A. Then the linear transformation T4 : C* — C"™
defined by T4(z) = Az for every z' € C" is a self-adjoint operator.

Remark 5.3.16 1. By Proposition 5.3.3, the map Py defined above is a linear transformation.



5.3. ORTHOGONAL PROJECTIONS AND APPLICATIONS 103
2. P2, = Py, (I — Pw)Pw =0 = Py (I — Py).

3. Letu,v € V withu = u; + uy and v = v| + vo for some u;, v, € W and us,ve € Wt. Then we

know that (u;,v;) =0 whenever 1 < ¢ # j < 2. Therefore, for every u,v € V,

(P (u),v) = (uy,v)={uy,vs+vy) = (u,vi)=(u+us,vy)
= (u, Pw(v)).

Thus, the orthogonal projection operator is a self-adjoint operator.

4. Let v e V and w € W. Then Py (w) = w for all w € W. Therefore, using Remarks 5.3.16.2 and
5.3.16.3, we get

(v = Pw(v),w) (I = Pw)(v), Pw(w)) = (Pw (I — Pw)(v),w)

(0(v),w) =(0,w) =0

for every w € W.

5. In particular, (v — Py (v), Pw (v) —w) = 0 as Pw(v) € W. Thus, (v — Py (v), Pw(v) —w') =0,
for every w' € W. Hence, for any v € V and w € W, we have

IV = Pw (v) + Pw(v) — w|®
Iv = Pw (V)1 + | P (v) — wlf?

+2(v — Py (v), Pw (v) — w)
v = P (V)2 + | P (v) — wiP.

lv —wlf?

Therefore,

v —wll > v—Pw©

and the equality holds if and only if w = Py, (v). Since Py (v) € W, we see that
dv,W)=inf {|lv—-w| :weW}=|v—-PyHW)].

That is, Py (v) is the vector nearest to v € W. This can also be stated as: the vector Py (v) solves

the following minimisation problem:

nf v =wl = v = P (v)]l

5.3.1 Matrix of the Orthogonal Projection

The minimization problem stated above arises in lot of applications. So, it will be very helpful if the
matrix of the orthogonal projection can be obtained under a given basis.

To this end, let W be a k-dimensional subspace of R with W+ as its orthogonal complement. Let
Py : R — R"™ be the orthogonal projection of R™ onto W. Suppose, we are given an orthonormal
basis B = (v1,Va,...,vg) of W. Under the assumption that B is known, we explicitly give the matrix of
Py with respect to an extended ordered basis of R™.

Let us extend the given ordered orthonormal basis B of W to get an orthonormal ordered basis
Bi = (v1,Va, ..., Vi, Vi1 ..., V) of R™. Then by Theorem 5.1.11, for any v € R", v .= > (v, v;)v;.
i=1
k
Thus, by definition, Py (v) = > (v,v;)v;. Let A = [v1,Vva,...,Vvg]. Consider the standard orthogonal
i=1
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n
ordered basis B = (e1,eq,...,e,) of R™. Therefore, if v; = aje;, for 1 <i <k,
j=1
3 a1i<v,vi>
ailr a2 - Ak i=1
a1 a2 - A2k Z a2 (v, vi)
A= . . . . ) [V]Bz = |&=t
an1 an2 e Ank i ani <V, VZ>
=1 i
and ) )
k
Z a1i<V7Vz‘>
zil
Z a2i<V7Vz‘>
[P ()]s, = | =1
k
> ani(v, Vi)
Li=1 i
Then as observed in Remark 5.2.3.4, A'A = I,. That is, for 1 <i,j < k,
z”: { 1 ifi=j
UsiQsj = e - .
pt 0 if i=j.
Thus, using the associativity of matrix product and (5.3.1), we get
_ > ari(v,vi)
ailr @21 - Qnl i=1
. ai2 a22 - QGn2 > a2i(v,vi)
(AA")(v) = A . . . =1
La1k G2k Ank 2": an: (v, vi>
=1 i
> s ( asi<V,Vi>) > (Z aslasi) {v,vi)
s=1 =1 =1 s=1
Z As2 (Z a5i<V7Vz‘>) Z a52a5i> <V7Vi>
= A |s=1 i=1 = A [i=1 \s=1
> ask (Z au<v7vz~>) > (Z aska5i> (v, vi)
Ls=1 =1 - Li=1 \s=1
- _
_ Z a1i<V7Vz‘>
<V7V1> iil
(v,v2) > az2i(v, vi)
= A = |i=1
_<V7vk> k .
Z am'<V7Vi>
Li=1 i

= [Pw(Vv)]s,-

Thus Py [Bz, B2) = AA?. Thus, we have proved the following theorem.

Theorem 5.3.17 Let W be a k-dimensional subspace of R™ and let Py : R* — R"

then

(5.3.1)

be the orthogonal

projection of R™ onto W along W+. Suppose, B = (v1,Va,...,V})) is an orthonormal ordered basis of W.
Define an n x k matrix A = [vy,Vva,...,Vg]. Then the matrix of the linear transformation Py, in the standard

orthogonal ordered basis (e1,ea,...,e,) is AA.
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Example 5.3.18 Let W = {(z,y,2,w) € R* : 2 = y,2 = w} be a subspace of W. Then an orthonormal

ordered basis of W is 1 1
—(1,1,0,0),—=(0,0,1,1)),
(511,00, 7(0.0.1,1))

and that of W+ is ) )

—(1,-1,0,0),—=(0,0,1,—-1)).

( \/5( ) \/5( )

Therefore, if Py : R* — R* is an orthogonal projection of R* onto W along W, then the corresponding

matrix A is given by

b

Il
o osksk
Shsk o o

Hence, the matrix of the orthogonal projection Py in the ordered basis

1 1 1 1
B=(—(1,1,0,0),—(0,0,1,1),—(1,-1,0,0), —(0,0,1, —1
(75(1:1,0,0),—=(0,0,1,1), —( )75 )
is
11
5 5 0 0
. L1 3 9
Py[B,B]= AA* = |2 2
00 & 1
11
00 5 35

It is easy to see that
1. the matrix Py [B, B] is symmetric,
2. Pw[B,B]? = Pw[B, B], and
3. (I4 — Pw(B,B])Pw[B,B] = 0 = Pw B, B](Is — Pw|B,B]).

Also, for any (z,y, z,w) € R, we have

T+y z4+w T—y z—w)t

[(x,y,z,wﬂsz(ﬁ, e

Thus, PW((x,y7z,w)) = xT—’_y(L 1,0,0)+ rrw

vector (x,vy,z,w) € R%.

(0,0,1,1) is the closest vector to the subspace W for any

Exercise 5.3.19 1. Show that for any non-zero vector vt € R™, the rank of the matrix vv’ is 1.

2. Let W be a subspace of a vector space V and let P : V. — V be the orthogonal projection of V'
onto W along W+. Let B be an orthonormal ordered basis of V. Then prove that corresponding matrix
satisfies P[B, B]' = P[B, B].

3. Let A be an n x n matrix with A2 = A and A* = A. Consider the associated linear transformation
T4 : R" — R"™ defined by Ta(v) = Av for all v € R™. Then prove that there exists a subspace W
of R™ such that T4 is the orthogonal projection of R™ onto W along W+.

4. Let Wy and Wy be two distinct subspaces of a finite dimensional vector space V. Let Py, and Py,
be the corresponding orthogonal projection operators of V along Wi and W, respectively. Then by
constructing an example in R?, show that the map Py, o Py, is a projection but not an orthogonal

projection.
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5. Let W be an (n— 1)-dimensional vector subspace of R™ and let W be its orthogonal complement. Let
B = (v1,va,...,Va_1,Vy) be an orthogonal ordered basis of R™ with (vq,va,...,v,_1) an ordered

basis of W. Define a map
T:R" —R" byT(v)=wo—w

whenever v = w + wq for some w € W and wy € W=. Then

(a) prove that T is a linear transformation,
(b) find the matrix, T[B, B], and

(c) prove that T'[B, B] is an orthogonal matrix.

T is called the reflection along W+,



Chapter 6

Eigenvalues, Eigenvectors and

Diagonalization

6.1 Introduction and Definitions

In this chapter, the linear transformations are from a given finite dimensional vector space V to itself.
Observe that in this case, the matrix of the linear transformation is a square matrix. So, in this chapter,
all the matrices are square matrices and a vector x means x = (x1,¥a,...,x,)" for some positive integer

n.

Example 6.1.1 Let A be a real symmetric matrix. Consider the following problem:

Maximize (Minimize) x'Ax such that x € R and x'x = 1.

To solve this, consider the Lagrangian

L(x,\) = x"Ax - A(x'x - 1) = Z Zam‘xﬂ?j - /\(Z ;7 —1).

i=1j=1 i=1

Partially differentiating L(x, \) with respect to x; for 1 < i < n, we get

oL
— =2a11x1 + 2a1222 + - - + 2010,y — 2M21,
8171

oL

—_— = 20,21$1 + 20,22$2 + -+ 2a2nxn — 2)\262,

BLEQ
and so on, till

oL

—— = 2ap121 + 2ap2%2 + -+ -+ 2000 Tn — 2T, .

o0z,
Therefore, to get the points of extrema, we solve for

OL OL OL oL
(0,0,...,0)" = ( )= == = 2(Ax — \x).

ox

8—1‘1’ 8—1;2’ ey 3—%
We therefore need to find a A € R and 0 # x € R™ such that Ax = Ax for the extremal problem.

Example 6.1.2 Consider a system of n ordinary differential equations of the form

dy(t

% — Ay, t > 0; (6.1.1)

107
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where A is a real n X n matrix and y is a column vector.
To get a solution, let us assume that
y(t) = ceM (6.1.2)

is a solution of (6.1.1) and look into what A and ¢ has to satisfy, i.e., we are investigating for a necessary
condition on A and c¢ so that (6.1.2) is a solution of (6.1.1). Note here that (6.1.1) has the zero solution,
namely y(t) = 0 and so we are looking for a non-zero c. Differentiating (6.1.2) with respect to ¢ and
substituting in (6.1.1), leads to

Aere = AeMc or equivalently (A — Al)c = 0. (6.1.3)

So, (6.1.2) is a solution of the given system of differential equations if and only if A\ and c satisfy (6.1.3).
That is, given an n X n matrix A, we are this lead to find a pair (A, ¢) such that ¢ # 0 and (6.1.3) is satisfied.

Let A be a matrix of order n. In general, we ask the question:

For what values of A € IF, there exist a non-zero vector x € F” such that
Ax = \x7 (6.1.4)

Here, F™ stands for either the vector space R™ over R or C" over C. Equation (6.1.4) is equivalent to
the equation
(A-X)x=0.

By Theorem 2.6.1, this system of linear equations has a non-zero solution, if
rank (A —AI) <n, orequivalently det(A— AI)=0.

So, to solve (6.1.4), we are forced to choose those values of A € F for which det(A — AI) = 0. Observe
that det(A — AI) is a polynomial in A of degree n. We are therefore lead to the following definition.

Definition 6.1.3 (characteristic Polynomial) Let A be a matrix of order n. The polynomial det(A — AI)
is called the characteristic polynomial of A and is denoted by p()\). The equation p(A) = 0 is called the
characteristic equation of A. If A € F is a solution of the characteristic equation p(\) = 0, then A is called a
characteristic value of A.

Some books use the term EIGENVALUE in place of characteristic value.

Theorem 6.1.4 Let A = [a;;]; a;; € F, for 1 <1i,j <mn.Suppose A = Ay € Fis a root of the characteristic

equation. Then there exists a non-zero v € F™ such that Av = A\gv.

PROOF. Since Ag is a root of the characteristic equation, det(A — A\gI) = 0. This shows that the matrix
A — NI is singular and therefore by Theorem 2.6.1 the linear system

(A - /\0]n)X =0

has a non-zero solution. O

Remark 6.1.5 Observe that the linear system Ax = Ax has a solution x = 0 for every A € F. So, we

consider only those x € F" that are non-zero and are solutions of the linear system Ax = Ax.

Definition 6.1.6 (Eigenvalue and Eigenvector) If the linear system Ax = Ax has a non-zero solution
x € F™ for some A € F, then

1. A € Fis called an eigenvalue of A,
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2. 0 # x € F" is called an eigenvector corresponding to the eigenvalue A of A, and

3. the tuple (A, x) is called an eigenpair.

Remark 6.1.7 To understand the difference between a characteristic value and an eigenvalue, we give
the following example.
0

Consider the matrix A = . Then the characteristic polynomial of A is

p(\) = N2 +1.
Given the matrix A, recall the linear transformation Ty : F2—F? defined by
Ta(x) = Ax for every x € F2.

1. If F = C, that is, if A is considered a COMPLEX matrix, then the roots of p(A\) = 0 in C are =+i.
So, A has (i,(1,i)") and (—i, (i,1)") as eigenpairs.

2. If F =R, that is, if A is considered a REAL matrix, then p(\) = 0 has no solution in R. Therefore,
if F =R, then A has no eigenvalue but it has +i as characteristic values.

Remark 6.1.8 Note that if (\,x) is an eigenpair for an n X n matrix A then for any non-zeroc € F, ¢ #

0, (A cx) is also an eigenpair for A. Similarly, if X1,Xa,...,X, are eigenvectors of A corresponding to

T
the eigenvalue A, then for any non-zero (c1,ca,...,c,) € F", it is easily seen that if Y ¢;x; # 0, then

=1
r

> ¢;x; Is also an eigenvector of A corresponding to the eigenvalue A. Hence, when we talk of eigenvectors
i=1
corresponding to an eigenvalue \, we mean LINEARLY INDEPENDENT EIGENVECTORS.

Suppose Ao € F is a root of the characteristic equation det(A — \oI) = 0. Then A — \o! is singular
and rank (A — \oI) < n. Suppose rank (A — X\ogI) = r < n. Then by Corollary 4.3.9, the linear system
(A — XI)x = 0 has n — r linearly independent solutions. That is, A has n — r linearly independent

eigenvectors corresponding to the eigenvalue \g whenever rank (A — X\l) =1 < n.

Example 6.1.9 1. Let A = diag(dy,ds,...,d,) with d; € R for 1 <4 < n. Then p(A) = [, (A — d;)
is the characteristic equation. So, the eigenpairs are

(dy,(1,0,...,0)), (d2, (0,1,0,...,0)"),...,(dn, (0,...,0,1)").

11
2. Let A = [0 1] . Then det(A — A\I2) = (1 — \)2. Hence, the characteristic equation has roots 1, 1.
That is 1 is a repeated eigenvalue. Now check that the equation (A — I3)x = 0 for x = (21, 2)"
is equivalent to the equation x2 = 0. And this has the solution x = (z1,0)’. Hence, from the above
remark, (1,0)! is a representative for the eigenvector. Therefore, HERE WE HAVE TWO EIGENVALUES
1,1 BUT ONLY ONE EIGENVECTOR.

1

3. Let A= . Then det(A — M) = (1 — \)%. The characteristic equation has roots 1, 1. Here, the

matrix that we have is I and we know that Iox = x for every x* € R? and we can CHOOSE ANY TWO
LINEARLY INDEPENDENT VECTORS x',y’ from R? to get (1,x) and (1,y) as the two eigenpairs.

In general, if x1,X2,...,x, are linearly independent vectors in R", then (1,x1), (1,%2), ..., (1,%x,)
are eigenpairs for the identity matrix, I,,.
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4. Let A= . Then det(A — Al3) = (A — 3)(A + 1). The characteristic equation has roots 3, —1.

Now check that the eigenpairs are (3, (1,1)), and (—1, (1, —1)?). In this case, we have TWO DISTINCT
EIGENVALUES AND THE CORRESPONDING EIGENVECTORS ARE ALSO LINEARLY INDEPENDENT.

The reader is required to prove the linear independence of the two eigenvectors.

1 -1
5. Let A= R Then det(A— AI3) = A? —2X\+2. The characteristic equation has roots 1+, 1 —.

Hence, over R, the matrix A has no eigenvalue. Over C, the reader is required to show that the eigenpairs
are (1+1,(i,1)") and (1 —14,(1,4)).

Exercise 6.1.10 1. Find the eigenvalues of a triangular matrix.
2. Find eigenpairs over C, for each of the following matrices:

l1 o] 1 144 i 141 [cos& —sin@] i [cose sinG]
N , an .
0 0

1—14 1 -1+ 7 sinf  cosf sinf —cosf
3. Let A and B be similar matrices.

)

(a) Then prove that A and B have the same set of eigenvalues.

(b) Let (\,x) be an eigenpair for A and (), y) be an eigenpair for B. What is the relationship between
the vectors x and y?

[Hint: Recall that if the matrices A and B are similar, then there exists a non-singular matriz

P such that B = PAP~1]

n
4. Let A = (a;;) be an n x n matrix. Suppose that for all i, 1 <i <n, > a;; = a. Then prove that a
=1
is an eigenvalue of A. What is the corresponding eigenvector?

5. Prove that the matrices A and A’ have the same set of eigenvalues. Construct a 2 X 2 matrix A such
that the eigenvectors of A and A? are different.

6. Let A be a matrix such that A2 = A (A is called an idempotent matrix). Then prove that its eigenvalues

are either 0 or 1 or both.

7. Let A be a matrix such that A* = 0 (A is called a nilpotent matrix) for some positive integer k > 1.
Then prove that its eigenvalues are all 0.

Theorem 6.1.11 Let A = [a;;] be an n x n matrix with eigenvalues A1, Az, ..., A\, not necessarily distinct.
Then det(A) = [[ A and tr(A) = > au = D A
i=1 i=1 i=1
PROOF. Since A1, Ao, ..., A\, are the n eigenvalues of A, by definition,
det(A—A,) =pA) = (—1)"(A = A1) (A= A2) - - (A = A\p). (6.1.5)

(6.1.5) is an identity in A as polynomials. Therefore, by substituting A = 0 in (6.1.5), we get

det(A) = (=1)"(=1)" [ » = ™
i=1 i=1
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Also,
ain — A a2 ain
az asz — A - azn
det(A — AL) = . T . (6.1.6)
an1 an?2 e Ann — A
= ao— a4+ Nag+ -
+(=1)" N gy F (=1)MA (6.1.7)
for some ag, ai,...,a,_1 € F. Note that a,_1, the coefficient of (—1)"~*A\"~! comes from the product

(a11 — )\)(CLQQ — /\) s (am — )\)

So, an—1 = > a; = tr(A) by definition of trace.
i=1
But , from (6.1.5) and (6.1.7), we get

ap — a1 + )\2(12 + -4 (—1)"_1)\"_1an_1 + (—l)n)\n

= DM M)A = A (A= A, (6.18)
Therefore, comparing the coefficient of (—1)"~tA\"~! we have
tr(A) = ap_1 = (“D{(-1) ) N} =D A
i=1 i=1
Hence, we get the required result. U

Exercise 6.1.12 1. Let A be a skew symmetric matrix of order 2n+ 1. Then prove that 0 is an eigenvalue
of A.

2. Let A be a 3 x 3 orthogonal matrix (AA" = I).If det(A) = 1, then prove that there exists a non-zero
vector v € R3 such that Av = v.

Let A be an n x n matrix. Then in the proof of the above theorem, we observed that the charac-
teristic equation det(A — M) = 0 is a polynomial equation of degree n in A. Also, for some numbers

ag, a1, ---,0n—1 € IF, it has the form
A" 4 an_l)\"_l + an_g)\Q +---a1A+ag = 0.

Note that, in the expression det(A — AI) =0, A is an element of F. Thus, we can only substitute A\ by
elements of F.

It turns out that the expression
A" + an_lAn_l + an_2A2 —+ - alA + a()I =0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton Theorem. We

state this theorem without proof and give some implications.

Theorem 6.1.13 (Cayley Hamilton Theorem) Let A be a square matrix of order n. Then A satisfies its
characteristic equation. That is,

A" + an_lAn_l + an_2A2 —+ - alA + a()I =0

holds true as a matrix identity.
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Some of the implications of Cayley Hamilton Theorem are as follows.

0 1
Remark 6.1.14 1. Let A = 0 ol Then its characteristic polynomial is p(\) = A\2. Also, for

the function, f(z) =z, f(0) =0, and f(A)= A # 0. This shows that the condition f(\) =0 for
each eigenvalue A of A does not imply that f(A) = 0.

2. Suppose we are given a square matrix A of order n and we are interested in calculating A® where
{ is large compared to n. Then we can use the division algorithm to find numbers g, a1, ..., Qp—1
and a polynomial f(X) such that

A= FOA" + @ A"+ ap_aA® + - ard + a)
+ao+dag+ -+ A" Lo,

Hence, by the Cayley Hamilton Theorem,
Al = O[()I —|— OélA —|— e —|— Oén_lAn_l.

That is, we just need to compute the powers of A till n — 1.

In the language of graph theory, it says the following:
“Let G be a graph on n vertices. Suppose there is no path of length n — 1 or less from a vertex v to a
vertex u of G. Then there is no path from v to u of any length. That is, the graph G is disconnected and

v and u are in different components.”

3. Let A be a non-singular matrix of order n. Then note that a,, = det(A) # 0 and

AT = _—1[14”_1 +an1 A"+t ad].

QAp

This matrix identity can be used to calculate the inverse.
Note that the vector A™! (as an element of the vector space of all n x n matrices) is a linear combination

of the vectors I, A,..., A" 1.

Exercise 6.1.15 Find inverse of the following matrices by using the Cayley Hamilton Theorem

2 3 4 -1 -1 1 1 -2 -1
)5 6 7| @)1 -1 1| di)|-2 1 -1
1 1 2 0 1 1 0o -1 2
Theorem 6.1.16 If Ay, \s,..., A\ are distinct eigenvalues of a matrix A with corresponding eigenvectors
X1,X2,. .., Xk, then the set {x1,Xa,...,x;} is linearly independent.

PROOF. The proof is by induction on the number m of eigenvalues. The result is obviously true if
m = 1 as the corresponding eigenvector is non-zero and we know that any set containing exactly one
non-zero vector is linearly independent.

Let the result be true for m, 1 <m < k. We prove the result for m + 1. We consider the equation

121+ o2+ -+ Cmy1Tmy1 =0 (619)
for the unknowns ¢y, ca, ..., Cmy1. We have
0=A0 = A(Cll'l + coxo + -+ Cm+1$m+1)

= cAx] +coAxg + -+ Cm+1A{Em+1

= ciA\ix1 +cadoxa + -+ Cm+1)\m+1517m+1- (6110)
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From equations (6.1.9) and (6.1.10), we get
ca(Aa — A1)x2 + c3(A3 — AM)X3 + - + Cmt1(Amg1 — A1) Xm41 = 0.
This is an equation in m eigenvectors. So, by the induction hypothesis, we have
ci(hi—A1)=0 for 2<i<m+1.

But the eigenvalues are distinct implies A; — A\ # 0 for 2 < ¢ < m + 1. We therefore get ¢; = 0 for
2 <i<m+1. Also, x; # 0 and therefore (6.1.9) gives ¢; = 0.

Thus, we have the required result. U
We are thus lead to the following important corollary.

Corollary 6.1.17 The eigenvectors corresponding to distinct eigenvalues of an n x n matrix A are linearly

independent.

Exercise 6.1.18 1. For an n x n matrix A, prove the following.

a) A and A! have the same set of eigenvalues.

)
b) If X is an eigenvalue of an invertible matrix A then % is an eigenvalue of A~1.
c)
)

d

If X is an eigenvalue of A then A* is an eigenvalue of A* for any positive integer k.

(
(
(
(d) If A and B are n x n matrices with A nonsingular then BA™! and A~!B have the same set of

eigenvalues.

In each case, what can you say about the eigenvectors?
2. Let A and B be 2 x 2 matrices for which det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.
3. Let (A1, u) be an eigenpair for a matrix A and let (A2, u) be an eigenpair for another matrix B.

(a) Then prove that (A; + A2, u) is an eigenpair for the matrix A + B.

(b) Give an example to show that if A1, Ay are respectively the eigenvalues of A and B, then A1 + Ay
need not be an eigenvalue of A + B.

4. Let \;,1 < ¢ < n be distinct non-zero eigenvalues of an n x n matrix A. Let u;,1 < i < n be

the corresponding eigenvectors. Then show that B = {uj,ug,...,u,} forms a basis of F"(F). If
[bls = (c1,ca,...,cn)t then show that Ax = b has the unique solution
C1 (6] Cp,
x—/\lu1—|—/\2uQ+ +)\nun.

6.2 diagonalization

Let A be a square matrix of order n and let T4 : F"*—F™ be the corresponding linear transformation.
In this section, we ask the question “does there exist a basis B of F" such that T4[B, B], the matrix of
the linear transformation 74, is in the simplest possible form.”

We know that, the simplest form for a matrix is the identity matrix and the diagonal matrix. In
this section, we show that for a certain class of matrices A, we can find a basis B such that T4[B, B] is
a diagonal matrix, consisting of the eigenvalues of A. This is equivalent to saying that A is similar to a

diagonal matrix. To show the above, we need the following definition.
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Definition 6.2.1 (Matrix Diagonalization) A matrix A is said to be diagonalizable if there exists a non-
singular matrix P such that P=1AP is a diagonal matrix.

Remark 6.2.2 Let A be an n x n diagonalizable matrix with eigenvalues A1, A2, ..., \,. By definition,
A is similar to a diagonal matrix D. Observe that D = diag(A1, A2, ..., A,) as similar matrices have the

same set of eigenvalues and the eigenvalues of a diagonal matrix are its diagonal entries.

0 1

Example 6.2.3 Let A = . Then we have the following:

1. Let V =R2 Then A has no real eigenvalue (see Example 6.1.8 and hence A doesn't have eigenvectors
that are vectors in R2. Hence, there does not exist any non-singular 2 x 2 real matrix P such that
P~1AP is a diagonal matrix.

2. In case, V = C?(C), the two complex eigenvalues of A are —i,i and the corresponding eigenvectors
are (i,1)* and (—i,1)?, respectively. Also, (i,1)" and (—i,1)! can be taken as a basis of C%(C). Define

3

. _ 1 (3 —1
a 2 X 2 complex matrix by U = 7| . Then

1
—i 0
0 4|’

Theorem 6.2.4 let A be an nxn matrix. Then A is diagonalizable if and only if A has n linearly independent

UrAU =

eigenvectors.

PROOF. Let A be diagonalizable. Then there exist matrices P and D such that
P7'AP = D = diag(\1, A2, ..., M)
Or equivalently, AP = PD. Let P = [uj,us,...,u,]. Then AP = PD implies that
Au; =d;u; for 1<¢<n.

Since u;’s are the columns of a non-singular matrix P, they are non-zero and so for 1 < i < n, we get
the eigenpairs (d;,u;) of A. Since, u;’s are columns of the non-singular matrix P, using Corollary 4.3.9,
we get up, us,...,u, are linearly independent.
Thus we have shown that if A is diagonalizable then A has n linearly independent eigenvectors.
Conversely, suppose A has n linearly independent eigenvectors u;, 1 < i < n with eigenvalues \;.
Then Au; = A\ju;. Let P = [ug,us,...,u,]. Since uj,us,...,u, are linearly independent, by Corollary

4.3.9, P is non-singular. Also,

AP = [Aul,AUQ,...,Aun] = [x\lul,)\gug,...,/\nun]
A0 0
0 X O
= [u,ug,...,u,] | .| =PD.
0 0 X,
Therefore the matrix A is diagonalizable. O

Corollary 6.2.5 let A be an n X n matrix. Suppose that the eigenvalues of A are distinct. Then A is

diagonalizable.
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PROOF. As A is an n X n matrix, it has n eigenvalues. Since all the eigenvalues of A are distinct, by Corol-
lary 6.1.17, the n eigenvectors are linearly independent. Hence, by Theorem 6.2.4, A is diagonalizable.

O

Corollary 6.2.6 Let A be an n x n matrix with \;, \a,..., \x as its distinct eigenvalues and p()) as its
characteristic polynomial. Suppose that for each i, 1 < i < k, (x — ;)™ divides p()\) but (x — \;)™i+!
does not divides p(A) for some positive integers m;. Then

A is diagonalizable if and only if dim(ker(A — X\;I)) =m; for each i, 1 <i < k.
Or equivalently A is diagonalizable if and only if rank(A — X\;I) =n —m; foreach i, 1 <i<k.

PROOF. As A is diagonalizable, by Theorem 6.2.4, A has n linearly independent eigenvalues. Also,

k
>>m; = n as deg(p()\)) = n. Hence, for each eigenvalue \;, 1 < i < k, A has exactly m; linearly
i=1

independent eigenvectors. Thus, for each ¢, 1 < i < k, the homogeneous linear system (A — \;I)x =0

has exactly m; linearly independent vectors in its solution set. Therefore, dim(ker(A — T )) > m;.
Indeed dim(ker(A — NI )) =m,; for 1 < i < k follows from a simple counting argument.
Now suppose that for each i, 1 <i <k, dim(ker(A— )\iI)) = m,;. Then for each 7, 1 <i < k, we can

choose m; linearly independent eigenvectors. Also by Corollary 6.1.17, the eigenvectors corresponding to
k

distinct eigenvalues are linearly independent. Hence A has n = > m; linearly independent eigenvectors.
i=1

Hence by Theorem 6.2.4, A is diagonalizable. U
2 1 1

Example 6.2.7 1. let A= | 1 2 1 |. Then det(A — XI) = (2 — X)2(1 — A). Hence, A has
0 -1 1

eigenvalues 1,2,2. It is easily seen that (1,(1,0,—1)") and ((2,(1,1,—1)") are the only eigenpairs.
That is, the matrix A has exactly one eigenvector corresponding to the repeated eigenvalue 2. Hence,
by Theorem 6.2.4, the matrix A is not diagonalizable.
2 11
2.Llet A= | 1 2 1 |.Then det(A— AI) = (4 — A)(1 — A% Hence, A has eigenvalues 1,1,4.
1 1 2
It can be easily verified that (1,—1,0)* and (1,0, —1)! correspond to the eigenvalue 1 and (1,1,1)*
corresponds to the eigenvalue 4. Note that the set {(1,—1,0)%, (1,0, —1)*} consisting of eigenvectors
corresponding to the eigenvalue 1 are not orthogonal. This set can be replaced by the orthogonal
set {(1,0,—1)% (1,—2,1)'} which still consists of eigenvectors corresponding to the eigenvalue 1 as
(1,-2,1) = 2(1,-1,0) — (1,0,—1). Also, the set {(1,1,1),(1,0,—1),(1,-2,1)} forms a basis of
1

1 1
3 . . . . . _ — .
R=>. So, by Theorem 6.2.4, the matrix A is diagonalizable. Also, if U = ?3 O1 ?6 is the
Vi V2 V6

corresponding unitary matrix then U*AU = diag(4,1,1).
Observe that the matrix A is a symmetric matrix. In this case, the eigenvectors are mutually orthogonal.
In general, for any nx n real symmetric matrix A, there always exist n eigenvectors and they are mutually

orthogonal. This result will be proved later.

Exercise 6.2.8 1. By finding the eigenvalues of the following matrices, justify whether or not A = PDP~!
for some real non-singular matrix P and a real diagonal matrix D.
l cosf  sin 9] g [0059 sin ¢
i

) ] for any 6 with 0 < 6 < 27.
sinf — cos

—sinf cos6
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Let A be an n x n matrix and B an m X m matrix. Suppose C = . Then show that C'is

diagonalizable if and only if both A and B are diagonalizable.

. Let T : R® — R® be a linear transformation with rank (T'— I) = 3 and

N(T) = {(z1, 72,23, 24, 75) € R® | 21 + 34 + 75 = 0, 72 + 23 = 0}
Then

(a) determine the eigenvalues of T'?
(b) find the number of linearly independent eigenvectors corresponding to each eigenvalue?

(c) is T diagonalizable? Justify your answer.

. Let A be a non-zero square matrix such that A2 = 0. Show that A cannot be diagonalized. [Hint:

Use Remark 6.2.2.]

. Are the following matrices diagonalizable?

1 3 2 1
1 0 -1 1 -3 3
) 0 2 3 1 ..
i) , ) |01 0], i) |0 =5 6
0 0 —1 1
0 0 2 0 -3 4
0 0 0 4

6.3 Diagonalizable matrices

In this section, we will look at some special classes of square matrices which are diagonalizable. We

will also be dealing with matrices having complex entries and hence for a matrix A = [a;;], recall the

following definitions.

Definition 6.3.1 (Special Matrices) 1. A* = (aj;), is called the conjugate transpose of the matrix

A.
Note that A* = At = Zt.

2. A square matrix A with complex entries is called

a Hermitian matrix if A* = A.

a unitary matrix if A A* = A*A=1,.

(a)
(b)
(c) a skew-Hermitian matrix if A* = —A.
(d) a normal matrix if A*A = AA*.

3. A square matrix A with real entries is called

(a) a symmetric matrix if A = A.
(b) an orthogonal matrix if A A = A'A = I,,.

(c) a skew-symmetric matrix if A* = —A.

Note that a symmetric matrix is always Hermitian, a skew-symmetric matrix is always skew-Hermitian

and an orthogonal matrix is always unitary. Each of these matrices are normal. If A is a unitary matrix
then A* = A1,

Example 6.3.2 1. Let B =

i

— (3

1] . Then B is skew-Hermitian.
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1

V2

that v/2A is also a normal matrix.

L
2 LetA:Ll_ Z]andB:
7 1

1 . . . . .
] . Then A is a unitary matrix and B is a normal matrix. Note

Definition 6.3.3 (Unitary Equivalence) Let A and B be two n X n matrices. They are called unitarily
equivalent if there exists a unitary matrix U such that A = U*BU.

Exercise 6.3.4 1. Let A be any matrix. Then A = 1(A + A*) + (A — A*) where (A + A%) is the
Hermitian part of A and (A — A*) is the skew-Hermitian part of A.

2. Every matrix can be uniquely expressed as A = S + iT where both S and T are Hermitian matrices.
3. Show that A — A* is always skew-Hermitian.

4. Does there exist a unitary matrix U such that UAU~! = B where

1 1 4 2 —1 32
A=10 2 2|landB=1{0 1 2
0 0 3 0 0 3

Proposition 6.3.5 Let A be an n x n Hermitian matrix. Then all the eigenvalues of A are real.
PROOF. Let (A, x) be an eigenpair. Then Ax = A\x and A = A* implies
X*A =x*A* = (Ax)" = (Ax)* = Ix*.
Hence
AxX*x = x*(Ax) = x*(4x) = (x*A)x = (Ox")x = \x*x.

But x is an eigenvector and hence x # 0 and so the real number |x||? = x*x is non-zero as well. Thus
A= \. That is, A is a real number. O

Theorem 6.3.6 Let A be an n x n Hermitian matrix. Then A is unitarily diagonalizable. That is, there
exists a unitary matrix U such that U* AU = D; where D is a diagonal matrix with the eigenvalues of A as
the diagonal entries.

In other words, the eigenvectors of A form an orthonormal basis of C™.

PrROOF. We will prove the result by induction on the size of the matrix. The result is clearly true if
n = 1. Let the result be true for n = k — 1. we will prove the result in case n = k. So, let A be a k x k

matrix and let (A1, x) be an eigenpair of A with [|x|| = 1. We now extend the linearly independent set
{x} to form an orthonormal basis {x,us, us, ..., u;} (using Gram-Schmidt Orthogonalisation) of CF.
As {x,uz,us,...,u} is an orthonormal set,

wx=0 forall i=23,... k.
Therefore, observe that for all 7, 2 < i <k,

(Au;)* x = (u; * A")x = u] (A*x) = u] (Ax) = u; (\1x) = A1 (ufx) = 0.
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Hence, we also have x*(Au;) = 0 for 2 < i < k. Now, define Uy = [x, ug, --- ,ux] (with x,us,...,u; as
columns of Uy). Then the matrix U; is a unitary matrix and

UTtAU, = UjAU, = Uf[Ax Auy - Auy]
[x* Ax*x - xMAuy
w whx) o wp(Auy)

= T ax Aug - - A =

wihx) o wp(Awg)

where B is a (k — 1) x (k — 1) matrix. As the matrix U; is unitary, U; = U; . So, A* = A gives
(U7'AU,)* = U AU;. This condition, together with the fact that \; is a real number (use Propo-
sition 6.3.5), implies that B* = B. That is, B is also a Hermitian matrix. Therefore, by induction
hypothesis there exists a (k — 1) x (k — 1) unitary matrix Us such that

Uy 'BUy = Dy = diag(Ma, ..., Ap).

Recall that , the entries \;, for 2 < i < k are the eigenvalues of the matrix B. We also know that two

similar matrices have the same set of eigenvalues. Hence, the eigenvalues of A are A1, Ao, ..., A\g. Define
1 0
U=U; . Then U is a unitary matrix and
2
1 o]\’ 1 0
UTtAau = Uy AU
0 U; 0 U
1 0 1 0
= LU Ay
0 U, 0 U;
1 o . 1 0
= Uy AU
0o Uyt (U At) Us
[t [u o]t o] [u 0
|0 uUytl|o B||o U] |0 U;'BU,
a0
|0 Do’
Thus, U~'AU is a diagonal matrix with diagonal entries A1, A2,..., A, the eigenvalues of A. Hence,
the result follows. O

Corollary 6.3.7 Let A be an n X n real symmetric matrix. Then
1. the eigenvalues of A are all real,
2. the corresponding eigenvectors can be chosen to have real entries, and
3. the eigenvectors also form an orthonormal basis of R™.

PROOF. As A is symmetric, A is also an Hermitian matrix. Hence, by Proposition 6.3.5, the eigenvalues
of A are all real. Let (A, x) be an eigenpair of A. Suppose x' € C™. Then there exist y',z' € R" such
that x =y + iz. So,

Ax = x = Ay +iz) = My +i2).
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Comparing the real and imaginary parts, we get Ay = Ay and Az = Az. Thus, we can choose the
eigenvectors to have real entries.
To prove the orthonormality of the eigenvectors, we proceed on the lines of the proof of Theorem

6.3.6, Hence, the readers are advised to complete the proof. O

Exercise 6.3.8 1. Let A be a skew-Hermitian matrix. Then all the eigenvalues of A are either zero or
purely imaginary. Also, the eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.
[Hint: Carefully study the proof of Theorem 6.3.6.]

2. Let A be an n X n unitary matrix. Then

(a) the rows of A form an orthonormal basis of C".

(b) the columns of A form an orthonormal basis of C™.

(c) for any two vectors x,y € C"*1 (Ax, Ay) = (x,y).

(d) for any vector x € C"*1, || Ax|| = ||x].

(e) for any eigenvalue A A, |\ =1.

(f) the eigenvectors x,y corresponding to distinct eigenvalues A and p satisfy (x,y) = 0. That is, if

(A, x) and (u,y) are eigenpairs, with A # p, then x and y are mutually orthogonal.

3. Let A be a normal matrix. Then, show that if (), x) is an eigenpair for A then (\,x) is an eigenpair
for A*.

4. Show that the matrices A = 3 ﬂ and B =

10 9 . .
2} are similar. Is it possible to find a unitary
matrix U such that A = U*BU?
5. Let A be a 2 x 2 orthogonal matrix. Then prove the following:

(a) if det(A) =1, then A = cosf —sing

. ] for some 8, 0 <6 < 2.
sinf  cos

1 0
(b) if det A = —1, then there exists a basis of R? in which the matrix of A looks like [O 1] .

6. Describe all 2 x 2 orthogonal matrices.

. Determine A301,

~

2
.Let A= |1
1

L
N —

8. Let A be a 3 x 3 orthogonal matrix. Then prove the following:

(a) if det(A) =1, then A is a rotation about a fixed axis, in the sense that A has an eigenpair (1,x)

1

such that the restriction of A to the plane x* is a two dimensional rotation of x=.

(b) if det A = —1, then the action of A corresponds to a reflection through a plane P, followed by a

10 9
-4 =2

are similar but not unitarily equivalent, whereas unitary equivalence implies similarity equivalence as

rotation about the line through the origin that is perpendicular to P.

Remark 6.3.9 In the previous exercise, we saw that the matrices A =

4
]andB:
4

U* = U~!. But in numerical calculations, unitary transformations are preferred as compared to similarity

transformations. The main reasons being:
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1. Exercise 6.3.8.2 implies that an orthonormal change of basis leaves unchanged the sum of squares
of the absolute values of the entries which need not be true under a non-orthonormal change of

basis.
2. AsU* =U~! for a unitary matrix U, unitary equivalence is computationally simpler.
3. Also in doing “conjugate transpose”, the loss of accuracy due to round-off errors doesn’t occur.

We next prove the Schur’s Lemma and use it to show that normal matrices are unitarily diagonaliz-
able.

Lemma 6.3.10 (Schur's Lemma) Every n x n complex matrix is unitarily similar to an upper triangular

matrix.

Proor. We will prove the result by induction on the size of the matrix. The result is clearly true
if n = 1. Let the result be true for n = k — 1. we will prove the result in case n = k. So, let A be a

k x k matrix and let (A1, z) be an eigenpair for A with ||z|| = 1. Now the linearly independent set {z} is

extended, using the Gram-Schmidt Orthogonalisation, to get an orthonormal basis {z,us2,us, ..., ug}.
Then Uy = [z ug - - ug] (with x,us, ..., ux as the columns of the matrix U; ) is a unitary matrix and
UTtAU, = UFAU, = Uf[Az Auy - Auy]
x*
u3
= O vz Aug - Ay =
: B
uy, 0

where B is a (k — 1) x (k — 1) matrix. By induction hypothesis there exists a (k — 1) x (k — 1) unitary
matrix Us such that U; ! BU, is an upper triangular matrix with diagonal entries Ao, ..., Az, the eigen
values of the matrix B. Observe that since the eigenvalues of B are \o, ..., \; the eigenvalues of A are

1 0
A, A2, ..., M. Define U = Uy o Ul Then check that U is a unitary matrix and U1 AU is an upper
2

triangular matrix with diagonal entries A1, Aa, ..., Ak, the eigenvalues of the matrix A. Hence, the result
follows. U

Exercise 6.3.11 1. Let A be an n x n real invertible matrix. Prove that there exists an orthogonal matrix
P and a diagonal matrix D with positive diagonal entries such that AA* = PDP~!.

111 2 -1 V2
2. Show that matrices A= [0 2 1| and B= [0 1 0 | are unitarily equivalent via the unitary
0 0 3 0 0 3

matrix U = - -1 . Hence, conclude that the upper triangular matrix obtained in the

V2
\/5

"Schur's Lemma” need not be unique.

3. Show that the normal matrices are diagonalizable.
[Hint: Show that the matriz B in the proof of the above theorem is also a normal matriz and if T

is an upper triangular matriz with T*T = TT* then T has to be a diagonal matriz].

Remark 6.3.12 (The Spectral Theorem for Normal Matrices) Let A be an n x n normal
matrix. Then the above exercise shows that there exists an orthonormal basis {x1,X2,...,X,} of
C™(C) such that Ax; = \;x; for 1 <i <mn.
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4. Let A be a normal matrix. Prove the following:

(a) if all the eigenvalues of A are 0, then A = 0,
(b) if all the eigenvalues of A are 1, then A =1.

We end this chapter with an application of the theory of diagonalization to the study of conic sections

in analytic geometry and the study of maxima and minima in analysis.

6.4 Sylvester’s Law of Inertia and Applications

Definition 6.4.1 (Bilinear Form) Let A be a n x m matrix with real entries. A bilinear form in x =
(v1,22, ..., %), y = (y1,%2,---,Yn)" is an expression of the type

n
Qx,y) =x'Ay = > aimiy;.
i,j=1
Observe that if A = I (the identity matrix) then the bilinear form reduces to the standard real inner
product. Also, if we want it to be symmetric in x and y then it is necessary and sufficient that a;; = a;;
for all i,5 = 1,2,...,n. Why? Hence, any symmetric bilinear form is naturally associated with a real

symmetric matrix.

Definition 6.4.2 (Sesquilinear Form) Let A be a n X n matrix with complex entries. A sesquilinear form

inx = (z1,22,...,20)% ¥y = (¥1,92,...,yn) is given by

n
H(x,y) = Y aizJ;.
i,j=1
Note that if A = I (the identity matrix) then the sesquilinear form reduces to the standard complex
inner product. Also, it can be easily seen that this form is ‘linear’ in the first component and ‘conjugate
linear’ in the second component. Also, if we want H(x,y) = H(y,x) then the matrix A need to be an
Hermitian matrix. Note that if a;; € R and x,y € R", then the sesquilinear form reduces to a bilinear
form.
The expression Q(x,x) is called the quadratic form and H(x,x) the Hermitian form. We generally
write Q(x) and H(x) in place of Q(x,x) and H(x,x), respectively. It can be easily shown that for any
choice of x, the Hermitian form H(x) is a real number.

Therefore, in matrix notation, for a Hermitian matrix A, the Hermitian form can be rewritten as

H(x) = x"Ax, where x = (21,22, ...,7,)", and A = [a;;].

1 2—1 . .. . t

Example 6.4.3 Let A = ot 5 | Then check that A is an Hermitian matrix and for x = (x1,z2)",
i
the Hermitian form
1 2—14| (a1
H = Xx"Ax = (T1,T2
(x) x*Ax = (T1,72) 5+i 9 ] <x2>

= |o1|* + 2|22|* + 2Re[(2 — i) T120]

where ‘Re’ denotes the real part of a complex number. This shows that for every choice of x the Hermitian

form is always real. Why?
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The main idea is to express H(x) as sum of squares and hence determine the possible values that
it can take. Note that if we replace x by ¢x, where ¢ is any complex number, then H(x) simply gets
multiplied by |c|? and hence one needs to study only those x for which ||x|| = 1, i.e., x is a normalised
vector.

From Exercise 6.3.11.3 one knows that if A = A* (A is Hermitian) then there exists a unitary matrix
U such that U*AU = D (D = diag(A1, e, - .., Ap) with A;’s the eigenvalues of the matrix A which we
know are real). So, taking z = U*x (i.e., choosing z;’s as linear combination of x;’s with coefficients
coming from the entries of the matrix U*), one gets

2
H(x) =x"Ax=2z"U"AUz = z" Dz = Z )\i|zi|2 = Z i Zuji*xj . (6.4.1)
i=1 i=1  |j=1

Thus, one knows the possible values that H(x) can take depending on the eigenvalues of the matrix A
n

in case A is a Hermitian matrix. Also, for 1 <1 <n, Y uj;*z; represents the principal axes of the conic
j=1
that they represent in the n-dimensional space.

Equation (6.4.1) gives one method of writing H(x) as a sum of n absolute squares of linearly inde-
pendent linear forms. One can easily show that there are more than one way of writing H(x) as sum of
squares. The question arises, “what can we say about the coefficients when H(x) has been written as
sum of absolute squares”.

This question is answered by ‘Sylvester’s law of inertia’ which we state as the next lemma.

Lemma 6.4.4 Every Hermitian form H(x) = x*Ax (with A an Hermitian matrix) in n variables can be
written as

H(x) = |yi* + |y2> + - + lypl* = lypsal® — - = |y ?

where y1,y2, ..., y, are linearly independent linear forms in 1, xs, ..., %y, and the integers pand r, 0 < p <
r < n, depend only on A.

ProoF. From Equation (6.4.1) it is easily seen that H(x) has the required form. Need to show that p
and r are uniquely given by A.

Hence, let us assume on the contrary that there exist positive integers p, q,r, s with p > ¢ such that

H(x) = |l + gl + -+ gl = [ypral’ = = |y,

= Jal ol e 2l = e = el
Since, y = (y1,¥2,---,yn)" and z = (21, 22, ..., z,)* are linear combinations of x1,x, ..., x,, we can find
a matrix B such that z = By. Choose yp+1 = Yp42 = -+ =y = 0. Since p > ¢, Theorem 2.6.1, gives
the existence of finding nonzero values of y1,y2,...,yp such that z; = 20 = --- = 2, = 0. Hence, we get

a? + g2 + - + lypl® = —(zga1 P + -+ + 126 )%).

Now, this can hold only if 1 = y2 = --- = y, = 0, which gives a contradiction. Hence p = q.

Similarly, the case r > s can be resolved. 0

Note: The integer r is the rank of the matrix A and the number r — 2p is sometimes called the
inertial degree of A.

We complete this chapter by understanding the graph of
az® 4+ 2hxy + by + 2fx + 29y +c =0

for a,b,c, f,g,h € R. We first look at the following example.
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Example 6.4.5 Sketch the graph of 322 + 4zy + 3y% = 5.

Solution: Note that

3 2
322 4+ dzy + 3y = [z, ] 7.
2 3| |y

2
The eigenpairs for [525 3] are (5,(1,1)%), (1,(1,=1)"). Thus,

1 1 I 1 1
23] v I Ulsm 7
Let .
1 1 Tty
v I a—y
vz o vallY V2
Then
9 9 2| |x
3z +4dxy 4+ 3y° = [z, y]
3| |y

Thus the given graph reduces to
02
5u?+v? =5 orequivalently u?+ 5= 1.

Therefore, the given graph represents an ellipse with the principal axes w = 0 and v = 0. That is, the principal
axes are
y+x=0and z—y=0.

The eccentricity of the ellipse is e = %, the foci are at the points S| = (—\/57 \/5) and Sy = (\/_, —\/5),
and the equations of the directrices are x — y = j:%.

Figure 6.1: Ellipse
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Definition 6.4.6 (Associated Quadratic Form) Let az?+2hxy +by?+2g2x+2fy+c = 0 be the equation

of a general conic. The quadratic expression

9 9 a h| |z
+ 2hzy + by = |z,
ax xy + by [z, y] [h b] LJ]

is called the quadratic form associated with the given conic.

We now consider the general conic. We obtain conditions on the eigenvalues of the associated
quadratic form to characterize the different conic sections in R? (endowed with the standard inner

product).

Proposition 6.4.7 Consider the general conic
az® + 2hxy + by? + 2gx + 2fy +c = 0.
Prove that this conic represents
1. an ellipse if ab — h? > 0,
2. a parabola if ab— h? =0, and

3. a hyperbola if ab — h? < 0.

a h

PROOF. Let A = . Then the associated quadratic form

az? 4 2hxy + by = [:E y}A *
Y

As A is a symmetric matrix, by Corollary 6.3.7, the eigenvalues A1, Ay of A are both real, the corre-

sponding eigenvectors u, us are orthonormal and A is unitarily diagonalizable with

A= [utll l’\l 0] [uy ). (6.4.2)

U.é 0 )\2

. Then

o]

and the equation of the conic section in the (u,v)-plane, reduces to

az? 4 2hxy + by? = Mu® + Av?

Mu? + Mov? 4+ 2g1u+ 2f1v 4+ ¢ = 0.
Now, depending on the eigenvalues A1, A2, we consider different cases:

1. Ay =0=As.
Substituting Ay = A2 = 0 in (6.4.2) gives A = 0. Thus, the given conic reduces to a straight line
2g1u + 2f1v + ¢ = 0 in the (u,v)-plane.

2. A1 =0, #0.
In this case, the equation of the conic reduces to

AQ('U + d1)2 = dyu + d3 for some dl,dQ,dg € R.

(a) If do = d3 = 0, then in the (u,v)-plane, we get the pair of coincident lines v = —dj.
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(b) Ifdy =0, ds # 0.

/d
i. If Ay - d3 > 0, then we get a pair of parallel lines v = —d; + )\—3
2
ii. If Ag - d3 < 0, the solution set corresponding to the given conic is an empty set.

(c) If d2 # 0. Then the given equation is of the form Y2 = 4aX for some translates X = z + «
and Y = y + 8 and thus represents a parabola.

Also, observe that A; = 0 implies that the det(A4) = 0. That is, ab — h? = det(A) = 0.

3. Ay >0and X\ <O.

Let Ao = —as. Then the equation of the conic can be rewritten as
)\1(’[1, + d1)2 — 012(1) + d2)2 =dz for some dl, d2, ds € R.
In this case, we have the following:

(a) suppose d3 = 0. Then the equation of the conic reduces to
/\1(u + d1)2 - 062(1) + d2)2 =0.
The terms on the left can be written as product of two factors as A1, as > 0. Thus, in this

case, the given equation represents a pair of intersecting straight lines in the (u,v)-plane.

(b) suppose ds # 0. As ds # 0, we can assume ds > 0. So, the equation of the conic reduces to

Mu+di)®  ag(v+dy)?

= 1.
ds ds

This equation represents a hyperbola in the (u,v)-plane, with principal axes
u+di=0and v+ds=0.

As A1 A2 < 0, we have
ab— h? = det(A) = A A2 < 0.

4. A, 20 > 0.

In this case, the equation of the conic can be rewritten as
M (u+di)? + Xa(v+dp)? = ds, for some dy,ds,ds € R.
we now consider the following cases:

(a) suppose d3 = 0. Then the equation of the ellipse reduces to a pair of perpendicular lines
u+dy =0 and v + da = 0 in the (u,v)-plane.

(b) suppose ds < 0. Then there is no solution for the given equation. Hence, we do not get any
real ellipse in the (u,v)-plane.

(¢c) suppose ds > 0. In this case, the equation of the conic reduces to

M(u+dy)? n az(v + dy)?

= 1.
ds ds

This equation represents an ellipse in the (u,v)-plane, with principal axes

u+di=0and v+ds=0.
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Also, the condition A\;Ag > 0 implies that

ab— h? = det(A) = A A2 > 0.

Remark 6.4.8 Observe that the condition

HREEIH

implies that the principal axes of the conic are functions of the eigenvectors u; and us.

Exercise 6.4.9 Sketch the graph of the following surfaces:
1. 2% + 22y + y? — 62 — 10y = 3.
2. 222 + 62y + 3y? — 122 — 6y = 5.
3. 42?2 — day + 2y + 122 — 8y = 10.
4. 222 — 6y +5y> — 10z + 4y = 7.

As a last application, we consider the following problem that helps us in understanding the quadrics.
Let

az? + by? + cz® + 2dzy + 2exz + 2fyz + 2x + 2my +2nz+q=0 (6.4.3)

be a general quadric. Then we need to follow the steps given below to write the above quadric in the

standard form and thereby get the picture of the quadric. The steps are:
1. Observe that this equation can be rewritten as
x'Ax 4+ bix 4+ ¢ =0,

where
e 21 T

a d
A=1|d b f|, b= |2m]|, and x= |y
e f

o
N
S
Q

2. As the matrix A is symmetric matrix, find an orthogonal matrix P such that P*AP is a diagonal

matrix.

3. Replace the vector x by y = P'x. Then writing y* = (y1,y2,y3), the equation (6.4.3) reduces to
MYT + Aays + Asy3 + 2l1y1 + 2loys + 2l3ys +¢' =0 (6.4.4)
where A1, A2, A3 are the eigenvalues of A.

4. Complete the squares, if necessary, to write the equation (6.4.4) in terms of the variables 21, 29, 23

so that this equation is in the standard form.

5. Use the condition y = P!x to determine the centre and the planes of symmetry of the quadric in

terms of the original system.
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Example 6.4.10 Determine the quadric 222 + 2y? + 222 + 22y + 2wz + 2yz + 4o + 2y + 42 + 2 = 0.

2 1 1] 4
Solution: In this case, A= |1 2 1| and b= |2| and ¢ = 2. Check that for the orthonormal matrix
1o N
1 1 1
V5 V2 VB 400
P= LB ;—% \/Lg ,P*AP =10 1 0. So, the equation of the quadric reduces to
1 -2
3+ 0 = 0 0 1

10 2 2
4y%+y§+y§+ﬁyl+ﬁy2— %y3+2:0.
Or equivalently,

5 1, 1., 9
4(y1+m) +(y2+ﬁ) +(y3—%) =13

So, the equation of the quadric in standard form is

where the point (z,y, 2)! = P(%, ;—%, %)t = (52,1, 52)" is the centre. The calculation of the planes of
symmetry is left as an exercise to the reader.
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Part 11

Ordinary Differential Equation
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Chapter 7

Differential Equations

7.1 Introduction and Preliminaries

There are many branches of science and engineering where differential equations naturally arise. Now a
days there are applications to many areas in medicine, economics and social sciences. In this context, the
study of differential equations assumes importance. In addition, in the elementary study of differential
equations, we also see the applications of many results from analysis and linear algebra. Without
spending more time on motivation, (which will be clear as we go along) let us start with the following
notations. Suppose that y is a dependent variable and x is an independent variable. The derivatives of
y (with respect to ) are denoted by

o @ " de (k) d(k)

_dx’y —W,...,y :da:(k> for k> 3.

Y

The independent variable will be defined for an interval I; where I is either R or an interval a < x <
b C R. With these notations, we ask the question: what is a differential equation?
A differential equation is a relationship between the independent variable and the unknown dependent

functions along with its derivatives.

Definition 7.1.1 (Ordinary Differential Equation, ODE) An equation of the form
f(xvyay/a"'vy(n)) =0 for rxel (711)

is called an ORDINARY DIFFERENTIAL EQUATION; where f is a known function from I x R**! to R. Also,

the unknown function y is to be determined.

Remark 7.1.2 Usually, Equation (7.1.1) is written as f(x, vy, ... ,y(”)) = 0, and the interval I is not

mentioned in most of the examples.
Some examples of differential equations are
1. y =6sinz +9;
2.y +2y% =0;
3. VY = /T + cosy;
4. () +y=0.
5.y +y=0.

121
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6. vy +y=0.
7. y® = 0.

8. y" +msin(y) = 0.

Definition 7.1.3 (Order of a Differential Equation) The ORDER of a differential equation is the order of
the highest derivative occurring in the equation.

In Example 7.1, the order of Equations 1, 3, 4, 5 are one, that of Equations 2, 6 and 8 are two and
the Equation 7 has order three.

Definition 7.1.4 (Solution) A function y = f(z) is called a SOLUTION of a differential equation on I if
1. f is differentiable (as many times as the order of the equation) on I and

2. y satisfies the differential equation for all z € I.

Example 7.1.5 1. Show that y = ce™2% is a solution of 3’ +2y = 0 on R for a constant ¢ € R.
Solution: Let z € R. By direct differentiation we have y/ = —2ce™2* = —2y.

is a solution of

2. Show that for any constant a € R, y = . a

(I-z)y —y=0

on (—o0,1) or on (1,00). Note that y is not a solution on any interval containing 1.
Solution: It can be easily checked.

Remark 7.1.6 Sometimes a solution y is also called an INTEGRAL. A solution of the form y = g(x) is
called an EXPLICIT SOLUTION. Ify is given by an implicit relation h(x,y) = 0 and satisfies the differential
equation, then y is called an IMPLICIT SOLUTION.

Remark 7.1.7 Since the solution is obtained by integration, we may expect a constant of integration
(for each integration) to appear in a solution of a differential equation. If the order of the ODE is n, we
expect n(n > 1) arbitrary constants.

To start with, let us try to understand the structure of a first order differential equation of the form
fla,y,y') =0 (7.1.2)

and move to higher orders later. With this in mind let us look at:

Definition 7.1.8 (General Solution) A function y(z,c) is called a general solution of Equation (7.1.2) on
an interval I C R, if y(x,¢) is a solution of Equation (7.1.2) for each z € I, for a fixed ¢ € R but ¢ is
arbitrary.

Remark 7.1.9 The family of functions {y(.,c) : ¢ € R} is called a one parameter family of functions
and c is called a parameter. In other words, a general solution of Equation (7.1.2) is nothing but a one
parameter family of solutions of the Equation (7.1.2).

Example 7.1.10 1. Show that for each k € R, y = ke is a solution of ¢y’ = y. This is a general solution
as it is a one parameter family of solutions. Here the parameter is k.

Solution: This can be easily verified.
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2. Determine a differential equation for which a family of circles with center at (1,0) and arbitrary radius,
a is an implicit solution.

Solution: This family is represented by the implicit relation
(x—1)* +y* =a?, (7.1.3)
where a is a real constant. Then y is a solution of the differential equation

dy
dr
The function y satisfying Equation (7.1.3) is a one parameter family of solutions or a general solution
of Equation (7.1.4).

(z—1)+y=2 =0. (7.1.4)

3. Consider the one parameter family of circles with center at (¢,0) and unit radius. The family is
represented by the implicit relation
(x—c) +9° =1, (7.1.5)

where c is a real constant. Show that y satisfies (yy’)2 +y? =1

Solution: We note that, differentiation of the given equation, leads to
(x —c)+yy =0.

Now, eliminating ¢ from the two equations, we get
(yy')? +y° =1.

In Example 7.1.10.2, we see that y is not defined explicitly as a function of & but implicitly defined
1
by Equation (7.1.3). On the other hand y = 1

differential equation means to find a solution.

is an explicit solution in Example 7.1.5.2. Solving a
x

Let us now look at some geometrical interpretations of the differential Equation (7.1.2). The Equation
(7.1.2) is a relation between x, y and the slope of the function y at the point . For instance, let us find
the equation of the curve passing through (0, %) and whose slope at each point (z,y) is —f—y. If y is the
required curve, then y satisfies

dy @ 1

It is easy to verify that y satisfies the equation 22 + 4y = 1.

Exercise 7.1.11 1. Find the order of the following differential equations:
(a) y% +sin(y’) = 1.
(b) y+ (y')* = 2.
(©) ) +y"—2y" =1

2. Find a differential equation satisfied by the given family of curves:

(a) y = max, m real (family of lines).
(b) y? = 4dax, a real (family of parabolas).

(c) z=1r2cosf, y =r?sind, 0 is a parameter of the curve and r is a real number (family of circles
in parametric representation).

3. Find the equation of the curve C' which passes through (1,0) and whose slope at each point (z,y) is
—X

Y
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7.2 Separable Equations
In general, it may not be possible to find solutions of
y' = f(z.y)

where f is an arbitrary continuous function. But there are special cases of the function f for which the

above equation can be solved. One such set of equations is

y' = g(y)h(=). (7.2.1)

Integrating with respect to x, we get

1 dy dy
H(:E):/h(x)dx:/@Edy:/@:G(y)+c,

where c is a constant. Hence, its implicit solution is

Example 7.2.1 1. Solve: ¢/ = y(y — 1).
Solution: Here, g(y) =y (y — 1) and h(z) = 1. Then

i/

By using partial fractions and integrating, we get

B 1
Y7 Tete
where c is a constant of integration.
2. Solve i =42,
Solution: It is easy to deduce that y = — et where ¢ is a constant; is the required solution.
xr &
Observe that the solution is defined, only if « + ¢ # 0 for any x. For example, if we let y(0) = a, then
a

y=— exists as long as ax — 1 # 0.

axr —

7.2.1 Equations Reducible to Separable Form

There are many equations which are not of the form 7.2.1, but by a suitable substitution, they can be

reduced to the separable form. One such class of equation is

;- gi(z,y)
y fr
g2(x,y)

or equivalently 3’ = g(g)
x
where g1 and g are homogeneous functions of the same degree in x and y, and g is a continuous function.
In this case, we use the substitution, y = zu(x) to get y' = zu’ + u. Thus, the above equation after
substitution becomes
zu’ + u(z) = g(u),

which is a separable equation in u. For illustration, we consider some examples.
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Example 7.2.2 1. Find the general solution of 2zyy’ — y? + 22 = 0.
Solution: Let I be any interval not containing 0. Then

2Ly — (L2 y1=0.
x x
Letting y = zu(z), we have

2u(u'z +u) —u?+1=0 or 2zuu’ +u®-+1=0 or equivalently
2u  du 1
1+ u?de x
On integration, we get

1+u?=

or
2?2 +y? —cx=0.

The general solution can be re-written in the form
2

c c
(z— 5) +y° =7
This represents a family of circles with center (5,0) and radius §.
2. Find the equation of the curve passing through (0, 1) and whose slope at each point (z,y) is —4=

2y
Solution: If y is such a curve then we have
dy x

Notice that it is a separable equation and it is easy to verify that y satisfies 22 + 2% = 2.

3. The equations of the type
dy _az+bhy+a

dr ~ asx + boy + c2
can also be solved by the above method by replacing « by z + h and y by y + k, where k and k are to
be chosen such that
a1h+b1k+01 :0:a2h+b2]€+62

d b
Y _ w Thus, if  # 0 then the

This condition changes the given differential equation into
T aox + bay’

equation reduces to the form 3’ = g(£).

Exercise 7.2.3 1. Find the general solutions of the following:
dy

(a) dr

dy
b) y~1cos™ 4(e* 4+ 1)== = 0.
(b) y~ cos™  +(e” + 1)~

—z(lnz)(Iny).

2. Find the solution of

(@) (2a% +1r?) =1r2cos 3—97 r(0) = a.
T
d
(b) xe*tV = %, y(0) = 0.

3. Obtain the general solutions of the following:

dy

(a) {y — zcosec (%)} =a—.

(b) oy’ =y+ a2 +y>
dy T—y+2

(c) — =
dx r+y+2

4. Solve 3y/ = y — y? and use it to determine lim v. This equation occurs in a model of population.
r—r0o0
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7.3 Exact Equations

Asremarked, there are no general methods to find a solution of Equation (7.1.2). The EXACT EQUATIONS
is yet another class of equations that can be easily solved. In this section, we introduce this concept.
Let D be a region in xy-plane and let M and N be real valued functions defined on D. Consider an

equation

M(z,y) + N(x,y)j—z =0, (z,y) € D. (7.3.1)

In most of the books on Differential Equations, this equation is also written as
M(z,y)dz + N(z,y)dy =0, (z,y) € D. (7.3.2)

Definition 7.3.1 (Exact Equation) Equation (7.3.1) is called Exact if there exists a real valued twice con-
tinuously differentiable function f : R2—R (or the domain is an open subset of R?) such that

of _ of _
5 = M and 5o =N, (7.3.3)

Remark 7.3.2 If Equation (7.3.1) is exact, then

of | of dy _df(w.y)

or Oy dr  dx =0

This implies that f(x,y) = ¢ (where c is a constant) is an implicit solution of Equation (7.3.1). In other

words, the left side of Equation (7.3.1) is an exact differential.

Example 7.3.3 The equation y—|—xg—‘z = 0 is an exact equation. Observe that in this example, f(x,y) = xy.

The proof of the next theorem is given in Appendix 14.6.2.

Theorem 7.3.4 Let M and N be twice continuously differentiable function in a region D. The Equation

(7.3.1) is exact if and only if
OM  ON

—_—= . 3.4
oy Ox (7.3.4)

Note: If the Equation (7.3.1) or Equation (7.3.2) is exact, then there is a function f(z,y) satisfying

f(x,y) = ¢ for some constant ¢, such that
d(f(z,y)) = M(z,y)dz + N(z,y)dy = 0.

Let us consider some examples, where Theorem 7.3.4 can be used to easily find the general solution.

Example 7.3.5 1. Solve

dy
2xeY 20y < =0
ze¥ + (z°e +cosy)dx

Solution: With the above notations, we have

oM ON
M = 2zeY, N = z%e¥ + cosy, — = 2ze? and P 2xeY.
T

dy
Therefore, the given equation is exact. Hence, there exists a function G(x,y) such that

8_G
ox

oG
=2zeY and — = z%e¥ + cosy.
dy
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The first partial differentiation when integrated with respect to z (assuming y to be a constant) gives,
G(z,y) = 2%¢¥ + h(y).

But then
oG d(x2%e¥ + h(y))

E dy =N

implies ‘;—Z = cosy or h(y) = siny + ¢ where ¢ is an arbitrary constant. Thus, the general solution of
the given equation is

z?e¥ +siny = c.
The solution in this case is in implicit form.

2. Find values of £ and m such that the equation
d
ly? + mxy—y =0
dx

is exact. Also, find its general solution.
Solution: In this example, we have

N
=20y and 8— =my.

M = ty?, N = may, 3
x

oM
Ay
Hence for the given equation to be exact, m = 2¢. With this condition on ¢ and m, the equation
reduces to

d
Oy + 2€$y—y =0.
dx
This equation is not meaningful if £ = 0. Thus, the above equation reduces to

d 2
%(IZ/ )=0

whose solution is

for some arbitrary constant c.
3. Solve the equation

(3z%e¥ — 2?)dx + (z3e¥ + y*)dy = 0.

Solution: Here
M =3z%¢Y — 2% and N = z3e¥ + 42

Hence, %—Aj = %—];’ = 3x2e¥. Thus the given equation is exact. Therefore,

3
G(z,y) = /(3I26y —2%)dx = 2Pe¥ — % + h(y)

(keeping y as constant). To determine h(y), we partially differentiate G(x,y) with respect to y and
compare with N to get h(y) = 1’3—3 Hence

I3 y3
G =a2%e¥ — =+ L =
(ry)=a’e! — 5 + 5 =c

is the required implicit solution.
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7.3.1 Integrating Factors

On may occasions,

M($79)+N($ay)j

may not be exact. But the above equation may become exact, if we multiply it by a proper factor. For

Y _ 0, or equivalently M (z,y)dx + N(z,y)dy =0
T

example, the equation
yde —dy =0

is not exact. But, if we multiply it with e™*, then the equation reduces to
e "ydx — e "dy =0, or equivalently d (e "y) =0,

an exact equation. Such a factor (in this case, e™%) is called an INTEGRATING FACTOR for the given

equation. Formally

Definition 7.3.6 (Integrating Factor) A function Q(z,y) is called an integrating factor for the Equation
(7.3.1), if the equation
Qz,y)M(x,y)dr + Q(z,y)N (z,y)dy = 0

is exact.

Example 7.3.7 1. Solve the equation ydx — zdy = 0, x,y > 0.
Solution: It can be easily verified that the given equation is not exact. Multiplying by ﬁ, the equation

reduces to 1 1
—ydx — —xdy = 0, or equivalently d(lnxz —lny) = 0.
Ty Ty

Thus, by definition, — is an integrating factor. Hence, a general solution of the given equation is
x

G(z,y) = — = ¢, for some constant ¢ € R. That is,
Ty

y = cx, for some constant ¢ € R.

2. Find a general solution of the differential equation

(4y2 + 3zy) dxr — (33:y + 2x2)dy =0.

Solution: It can be easily verified that the given equation is not exact.
METHOD 1: Here the terms M = 4y? + 3zy and N = —(3zy + 222) are homogeneous functions of
degree 2. It may be checked that an integrating factor for the given differential equation is

1 1
M:U—&-Ny_xy(:zr—}—y).

Hence, we need to solve the partial differential equations

dy+3
0G(zy) _ yly+3e) 4 1 (7.3.5)
Ox wy(z+y) = oty
0G(x,y) _ —e@By+20) 2 1 (7.3.6)
oy zy(z +y) y vty

Integrating (keeping y constant) Equation (7.3.5), we have

G(z,y) =4ln|z| — In|z + y| + h(y) (7.3.7)
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and integrating (keeping = constant) Equation (7.3.6), we get
G(z,y) = —2Inly| — In |z + y| + g(x). (7.3.8)
Comparing Equations (7.3.7) and (7.3.8), the required solution is
G(zr,y) =4lnjz| —In|z+y| —2Injy| =Inc
for some real constant c. Or equivalently, the solution is
zt = c(x + y)y2.

METHOD 2: Here the terms M = 4y? + 3xy and N = —(3xy + 222) are polynomial in z and y.
Therefore, we suppose that z®y® is an integrating factor for some a, 3 € R. We try to find this a and

B.
Multiplying the terms M (x,y) and N (z,y) with 2%y”, we get

M(z,y) = z%yP (4y2 + 3;10y)7 and N(z,y) = —xo‘yB(S;Uy + 227).

OM (z,y) _ ON(z,y)

By P That is, the terms

For the new equation to be exact, we need

42+ B)xy' P 4 3(1 + B)ztTys

and
—3(1 4 a)zy' TP — 2(2 4 a)z!TyP

must be equal. Solving for a and 3, we get a = —5 and 8 = 1. That is, the expression % is also an
x

integrating factor for the given differential equation. This integrating factor leads to

3 2
Yy Yy

G(z,y) = AT 3 + h(y)
and 5 )
Yy Y

G(r,y) = —A s +g(z).

Thus, we need h(y) = g(x) = ¢, for some constant ¢ € R. Hence, the required solution by this method

IS

yQ(y + x) = cz.

Remark 7.3.8 1. If Equation (7.3.1) has a general solution, then it can be shown that Equation
(7.3.1) admits an integrating factor.

2. If Equation (7.3.1) has an integrating factor, then it has many (in fact infinitely many) integrating

factors.
3. Given Equation (7.3.1), whether or not it has an integrating factor, is a tough question to settle.
4. In some cases, we use the following rules to find the integrating factors.

(a) Consider a homogeneous equation M (z,y)dz + N(z,y)dy = 0. If

1
M N 0, th —_—
x4+ Ny #0, en Mr i Ny

is an Integrating Factor.
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(b) If the functions M (x,y) and N(z,y) are polynomial functions in x,vy; then x®y® works as an
integrating factor for some appropriate values of & and (3.

(¢) The equation M (z,y)dx + N(x,y)dy = 0 has e/ /®)* as an integrating factor, if f(zx) =

L (0M _ON is a function of x alone
— == i nction of x alone.
N \ Oy Ox u
(d) The equation M (z,y)dz + N(x,y)dy = 0 has e~/ 9W)% as an integrating factor, if g(y) =
L (oM is a function of y alone
AT is a function of y alone.

(e) For the equation
yMi (vy)dx + N1 (vy)dy =0

1
with Mx — Ny # 0, the function ———————— is an integrating factor.
Mz — Ny

Exercise 7.3.9 1. Show that the following equations are exact and hence solve them.

(a) (r+sind + 0059)% + r(cosf — sing) = 0.

d
(b) (e * —Iny+ %) + (—g —|—lnx—|—cosy)£ =

2. Find conditions on the function g(x,y) so that the equation

3.

d
(2 +2y”) +{az’y? + gla,y)} 32 = 0

is exact.
What are the conditions on f(x), g(y), ¢(x), and 9 (y) so that the equation
(6(2) +6(0)) + (&) + 9 22 = 0

is exact.

4. Verify that the following equations are not exact. Further find suitable integrating factors to solve

them.

d
(a) y+ (e +a%y?) 2 =0

dy _

0.
dzr

(b) >+ Bxy +y*>—1)

d
(c) y+ (x+x3y2)ﬁ =0

dy
d) 42+ (3 2L —o.
(d) ¥*+ Bzy +y )dx

5. Find the solution of

d
(a) (z%y + 2zy?) + 2(2> + 3x2y)dy =0 with y(1) = 0.

T

d
(b) y(wy + 22%y?) + x(xy — x2y2)d—y =0 with y(1) = 1.
X
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7.4 Linear Equations

Some times we might think of a subset or subclass of differential equations which admit explicit solutions.

d
This question is pertinent when we say that there are no means to find the explicit solution of & _
x
f(z,y) where f is an arbitrary continuous function in (x,y) in suitable domain of definition. In this
context, we have a class of equations, called Linear Equations (to be defined shortly) which admit explicit

solutions.

Definition 7.4.1 (Linear/Nonlinear Equations)

Let p(x) and g(x) be real-valued piecewise continuous functions defined on interval I = [a,b]. The equation
Y +p(@)y=q(@), vl (7.4.1)

d
is called a linear equation, where y’ stands for ey Equation (7.4.1) is called Linear non-homogeneous if

q(z) # 0 and is called Linear homogeneous if q(xggcz Oon I.

A first order equation is called a non-linear equation (in the independent variable) if it is neither a linear

homogeneous nor a non-homogeneous linear equation.

Example 7.4.2 1. The equation y’ = siny is a non-linear equation.
2. The equation y’ + y = sinz is a linear non-homogeneous equation.

3. The equation 3’ + 2%y = 0 is a linear homogeneous equation.
Define the indefinite integral P(z) = [ p(x)dz ( or [ p(s)ds). Multiplying Equation (7.4.1) by e’’(®),

we get

d
@yl 4 P @p(r)y = P @g(z) or equivalently d—(eP(w)y) = eP@yq(x).
x

On integration, we get

eP@y =4 /ep(m)q(x)dx.

In other words,

y =ce P@) 4 e~ P@) /eP(z)q(x)dx (7.4.2)
where ¢ is an arbitrary constant is the general solution of Equation (7.4.1).

x

Remark 7.4.3 If we let P(z) = [ p(s)ds in the above discussion, Equation (7.4.2) also represents

a

y =y(a)e P@ 4 =P /eP(S)q(s)ds. (7.4.3)

a

As a simple consequence, we have the following proposition.

Proposition 7.4.4 y = ce~7(®) (where ¢ is any constant) is the general solution of the linear homogeneous
equation
y' + p(x)y = 0. (7.4.4)

—kx

In particular, when p(z) = k, is a constant, the general solution is y = ce™"*, with ¢ an arbitrary constant.
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Example 7.4.5 1. Comparing the equation 3’ = y with Equation (7.4.1), we have

p(z)=—-1 and g¢(z)=0.

Hence, P(x) = [(—1)dz = —x. Substituting for P(z) in Equation (7.4.2), we get y = ce” as the

required general solution.

We can just use the second part of the above proposition to get the above result, as kK = —1.

2. The general solution of 2/ = —y, * € I (0 ¢ I) is y = cx~!, where c is an arbitrary constant. Notice

that no non-zero solution exists if we insist on the condition lim
x—0,2>0

A class of nonlinear Equations (7.4.1) (named after Bernoulli (1654 — 1705)) can be reduced to linear

equation. These equations are of the type

a

Y+ plx)y = q(zx)y”.

(7.4.5)

If a =0 or a = 1, then Equation (7.4.5) is a linear equation. Suppose that a # 0,1. We then define

u(x) = y'~% and therefore
u'=(1-a)yy™*=(1-a)qz)—p(r)u)
or equivalently

u' + (1= a)p(x)u = (1 - a)q(x),

a linear equation. For illustration, consider the following example.

Example 7.4.6 For m,n constants and m # 0, solve 3y — my + ny? = 0.
Solution: Let u = y~!. Then u(z) satisfies

v +mu=n

and its solution is

u=Ae " ™ /nemmdx =Ae ™" + n
m

Equivalently
1

Y=z i n
Ae~m® 4

with m # 0 and A an arbitrary constant, is the general solution.

Exercise 7.4.7 1. In Example 7.4.6, show that v’ + mu = n.

2. Find the genral solution of the following:

@ y+y=

(b) v — 3y =10
(c) ¥y —2zy=0
(d) v —zy =4z
(€ v +y=e

(f) sinhzy’ + ycoshz = e”.
(g) (2% + 1)y + 22y = 22,
3. Solve the following IVP's:

(@) ¥ —4y =5, y(0) = 0.

(7.4.6)
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b) v+ (1+ %)y =3, y(0) =0.

y +y=-coszx, y(r) =0.

4. Let y; be a solution of y' +a(x)y = bi(x) and y2 be a solution of ¥’ 4+ a(x)y = ba(x). Then show that
Y1 + y2 is a solution of

Yy +a(z)y = bi(z) + ba(x).

5. Reduce the following to linear equations and hence solve:

() ¥y +2y =y

(b) (zy+aie’)y =y?

(c) ¢ sin(y) + xzcos(y) = x
(d) v —y =ay.

6. Find the solution of the IVP
y' +dxy +xy® =0, y(0) =

Sl

7.5 Miscellaneous Remarks

In Section 7.4, we have learned to solve the linear equations. There are many other equations, though
not linear, which are also amicable for solving. Below, we consider a few classes of equations which can
be solved. In this section or in the sequel, p denotes el or y'. A word of caution is needed here. The

method described below are more or less ad hoc methods.

1. EQUATIONS SOLVABLE FOR Y:

Consider an equation of the form
y=f(z,p). (7.5.1)

Differentiating with respect to x, we get

dy _ _ 9f(z.p)  Of(x,p) dp dp
d

= =p o7 p e of equivalently p = g(z,p, %) (7.5.2)

Equation (7.5.2) can be viewed as a differential equation in p and . We now assume that Equation

(7.5.2) can be solved for p and its solution is
h(z,p,c) =0. (7.5.3)

If we are able to eliminate p between Equations (7.5.1) and (7.5.3), then we have an implicit
solution of the Equation (7.5.1).

Solve y = 2px — zp>.

d
Solution: Differentiating with respect to x and replacing d—y by p, we get
x

dp dp dp
_ _ 2 -F hal hal _ _
p=2p—p +2$dx ZIde or (p—|—2zdx)(1 p) =0.
So, either
d,
P+ ZI—p =0 or p=1.

dx
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That is, either p?2 = c or p = 1. Eliminating p from the given equation leads to an explicit solution

c
y:23:\/j—c or y=ux.
T

The first solution is a one-parameter family of solutions, giving us a general solution. The latter

one is a solution but not a general solution since it is not a one parameter family of solutions.

2. EQUATIONS IN WHICH THE INDEPENDENT VARIABLE x IS MISSING:
These are equations of the type f(y,p) = 0. If possible we solve for y and we proceed. Sometimes

introducing an arbitrary parameter helps. We illustrate it below.

Solve y? + p? = a® where a is a constant.
Solution: We equivalently rewrite the given equation, by (arbitrarily) introducing a new param-
eter t by

y =asint, p=acost

from which it follows

Y dy dy /dx
_— = S t' = —_—= — _—
at Y PT T w )
and so
dv _1dy _\ t+
—_— == r T = c.
dt pdt

Therefore, a general solution is
y = asin(t + ¢).

3. EQUATIONS IN WHICH y (DEPENDENT VARIABLE OR THE UNKNOWN) IS MISSING:
We illustrate this case by an example.

Find the general solution of z = p> — p — 1.
Solution: Recall that p = Z—g. Now, from the given equation, we have

dy dy dx 9
— == —=p(3p°—1).
b= dc dp p(3p~ —1)
Therefore,
—§4—12+C
y—4p 217

(regarding p as a parameter). The desired solution in this case is in the parametric form, given by

3 1
=t3—t—1 andy= t*— =t
x and y 1 5 +c

where c is an arbitrary constant.

Remark 7.5.1 The readers are again informed that the methods discussed in 1),2),3) are more

or less ad hoc methods. It may not work in all cases.

Exercise 7.5.2 1. Find the general solution of y = (1 + p)x + p*.
d
Hint: Differentiate with respect to x to get d_:z: = —(x + 2p) ( a linear equation in x). Ezpress the
P

solution in the parametric form
y(p) = (L +p)z+p°, z(p) =2(1—p)+ce?.
2. Solve the following differential equations:

(a) 8y = 2% + p*.
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b) y + ap = zip?.

Y
Y
d) 2y +p?+2p =2x(p+1).

(b)
(c) y?logy — p* = 2xyp.
(d)
(e) 2y = 222 + 4px + p?.

7.6 Initial Value Problems

As we had seen, there are no methods to solve a general equation of the form

y' = flz,y) (7.6.1)
and in this context two questions may be pertinent.
1. Does Equation (7.6.1) admit solutions at all (i.e., the existence problem)?

2. Is there a method to find solutions of Equation (7.6.1) in case the answer to the above question is

in the affirmative?

The answers to the above two questions are not simple. But there are partial answers if some
additional restrictions on the function f are imposed. The details are discussed in this section.
For a,b € R with a > 0,b > 0, we define

S={(z,y) €eR?: |z — x| <a, |y —yo| <b} C I xR.

Definition 7.6.1 (Initial Value Problems) Let f : S — R be a continuous function on a S. The problem
of finding a solution y of

y' = f(z,y), (r,y) € S,z €I with y(z) = yo (7.6.2)

in a neighbourhood I of g (or an open interval I containing ) is called an Initial Value Problem, henceforth
denoted by IVP.

The condition y(zo) = yo in Equation (7.6.2) is called the INITIAL CONDITION stated at = xo and yo
is called the INITIAL VALUE.

Further, we assume that a and b are finite. Let
M = max{|f(z,y)| : (z,y) € S}.

Such an M exists since S is a closed and bounded set and f is a continuous function and let h =

min(a, %) The ensuing proposition is simple and hence the proof is omitted.

Proposition 7.6.2 A function y is a solution of IVP (7.6.2) if and only if y satisfies
Y=o +/ f(s,y(s))ds. (7.6.3)
Zo

In the absence of any knowledge of a solution of IVP (7.6.2), we now try to find an approximate
solution. Any solution of the IVP (7.6.2) must satisfy the initial condition y(z¢) = yo. Hence, as a crude
approximation to the solution of IVP (7.6.2), we define

yo = yo for all = € [xg — h,zo + h].
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Now the Equation (7.6.3) appearing in Proposition 7.6.2, helps us to refine or improve the approximate
solution yo with a hope of getting a better approximate solution. We define

Y1 ="Yo + /m f(s,90)ds
zo
and for n = 2,3, ..., we inductively define
Yn = Yo + /I F(8,yn—1(s))ds for all = € [xg — h,zo + h].
zo
As yet we have not checked a few things, like whether the point (s,y,(s)) € S or not. We formalise
the theory in the latter part of this section. To get ourselves motivated, let us apply the above method

to the following IVP.

Example 7.6.3 Solve the IVP
Yy =-y,y0)=1, -1<z <1

Solution: From Proposition 7.6.2, a function ¥ is a solution of the above IVP if and only if

y=1- /: y(s)ds.

0

y1:1—/ ds=1—zx.
0
2

y2:1—/ (l—s)ds:l—x—l—w—.

We have yo = y(0) =1 and

So,

By induction, one can easily verify that

2 $3 "

-1 z 1)"
yo=1—at o =g (D)

Note: The solution of the given IVP is

y=e ¢ andthat lim y, =e "
o]

n—-

This example justifies the use of the word approximate solution for the y,’s.

We now formalise the above procedure.

Definition 7.6.4 (Picard’s Successive Approximations) Consider the IVP (7.6.2). For z € I with |z —
Zo| < a, define inductively

yo(r) = wyo andfor n=1,2,...,
Yn(z) = wo +/ f(8,yn—1(s))ds. (7.6.4)
x
Then yo,y1,---,Yn, - .. are called Picard’s successive approximations to the IVP (7.6.2).

Whether Equation (7.6.4) is well defined or not is settled in the following proposition.

Proposition 7.6.5 The Picard’s approximates y,,'s, for the IVP (7.6.2) defined by Equation (7.6.4) is well
defined on the interval |z — 2| < h = min{a, &}, i.c., for @ € [zo — h, 20 + hl.
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ProOF. We have to verify that for each n =0,1,2,..., (s,yn) belongs to the domain of definition of f
for |s— x| < h. This is needed due to the reason that f(s,y,) appearing as integrand in Equation (7.6.4)
may not be defined. For n = 0, it is obvious that f(s,y0) € S as |s — 20| < a and |yo — yo| = 0 < b. For

n = 1, we notice that, if |x — 2| < h then
ly1 — ol < Mz — 20| < Mh <b.

So, (z,y1) € S whenever |z — o] < h.
The rest of the proof is by the method of induction. We have established the result for n = 1, namely

(x,y1) € S if |z —xo| <h.

Assume that for k =1,2,...,n—1, (z,yx) € S whenever |x —xz¢| < h. Now, by definition of y,,, we have

Yn — Yo = / f(8,Yn—1)ds.
zo
But then by induction hypotheses (s,y,—1) € S and hence
[yn — yo| < M|z — 0] < Mh <b.

This shows that (z,y,) € S whenever |z — 29| < h. Hence (z,yx) € S for k = n holds and therefore the

proof of the proposition is complete. O

Let us again come back to Example 7.6.3 in the light of Proposition 7.6.2.

Example 7.6.6 Compute the successive approximations to the IVP

y=-y, -1<z<1,|ly—1]<1andy(0)=1. (7.6.5)

Solution: Note that g = 0,y0 = 1, f(z,y) = —y, and a = b = 1. The set S on which we are studying the
differential equation is
S={(z,y) : x| < 1,[y - 1[ < 1}.

By Proposition 7.6.2, on this set
M =max{ly| : (z,y) € S} =2 and h=min{l,1/2} =1/2.

' . 1 . o
Therefore, the approximate solutions y,,'s are defined only for the interval [—5, 5], if we use Proposition
7.6.2.

Observe that the exact solution y = e™* and the approximate solutions y,’s of Example 7.6.3 exist
n [—1,1]. But the approximate solutions as seen above are defined in the interval [—%, %]
That is, for any IVP, the approximate solutions ¥,’s may exist on a larger interval as compared to
the interval obtained by the application of the Proposition 7.6.2.

We now consider another example.
Example 7.6.7 Find the Picard’s successive approximations for the IVP
vy = f(y), 0<x<1,y>0andy(0)=0; (7.6.6)

where

fly) =y fory = 0.
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Solution: By definition yo(z) = yo = 0 and

yl(ﬁ)=y0+/;f(yo)ds:0+/omx/6ds:0.

A similar argument implies that y,(z) = 0 for all n = 2,3,... and lim y,(z) = 0. Also, it can be easily
n—o0
verified that y(z) = 0 is a solution of the IVP (7.6.6).
2 2
Also y(x) = %, 0 <z < 1is a solution of Equation (7.6.6) and the {y,}'s do not converge to % Note

here that the IVP (7.6.6) has at least two solutions.

The following result is about the existence of a unique solution to a class of IVPs. We state the

theorem without proof.

Theorem 7.6.8 (Picard’s Theorem on Existence and Uniqueness) Let S = {(z,y) : |z — 20| < a, |y —

0
yo| < b}, and a,b > 0. Let f : S—R be such that f as well as B_f are continuous on S. Also, let M, K € R
Y
be constants such that

Al 1Y) <K on s
oy

Let & = min{a,b/M}. Then the sequence of successive approximations {y,,} (defined by Equation (7.6.4))
for the IVP (7.6.2) uniformly converges on |z — z¢| < h to a solution of IVP (7.6.2). Moreover the solution
to IVP (7.6.2) is unique.

Remark 7.6.9 The theorem asserts the existence of a unique solution on a subinterval |z — x| < h of
the given interval |x — xo| < a. In a way it is in a neighbourhood of xy and so this result is also called
the local existence of a unique solution. A natural question is whether the solution exists on the whole
of the interval |z — xo| < a. The answer to this question is beyond the scope of this book.

Whenever we talk of the Picard’s theorem, we mean it in this local sense.

Exercise 7.6.10 1. Compute the sequence {y,} of the successive approximations to the IVP
y' =y (y—1), y(zo) = 0,20 > 0.
2. Show that the solution of the IVP
y' =y y—1), y(zo) = 1,20 20
isy=1, ¢ > xg.

3. The IVP
Yy =y, y(0)=0,2>0
2

has solutions y; = 0 as well as yo = —, 2 > 0. Why does the existence of the two solutions not

e~

contradict the Picard’s theorem?

4. Consider the IVP
v =y, y(0) =1 in{(2,y) : 2] < a,|y| < b}
for any a,b > 0.
(a) Compute the interval of existence of the solution of the IVP by using Theorem 7.6.8.

(b) Show that y = e is the solution of the IVP which exists on whole of R.

This again shows that the solution to an IVP may exist on a larger interval than what is being implied
by Theorem 7.6.8.
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7.6.1 Orthogonal Trajectories

One among the many applications of differential equations is to find curves that intersect a given family
of curves at right angles. In other words, given a family F, of curves, we wish to find curve (or curves)
I" which intersect orthogonally with any member of F' (whenever they intersect). It is important to
note that we are not insisting that I' should intersect every member of F, but if they intersect, the
angle between their tangents, at every point of intersection, is 90°. Such a family of curves I' is called
“orthogonal trajectories” of the family F. That is, at the common point of intersection, the tangents are
orthogonal. In case, the family F} and F> are identical, we say that the family is self-orthogonal.
Before procedding to an example, let us note that at the common point of intersection, the product
of the slopes of the tangent is —1. In order to find the orthogonal trajectories of a family of curves
F, parametrized by a constant ¢, we eliminate ¢ between y and y’. This gives the slope at any point
(z,y) and is independent of the choice of the curve. Below, we illustrate, how to obtain the orthogonal

trajectories.

Example 7.6.11 Compute the orthogonal trajectories of the family F' of curves given by
F:  y?=ca® (7.6.7)
where c is an arbitrary constant.
Solution: Differentiating Equation (7.6.7), we get
2yy’ = 3ca. (7.6.8)
Elimination of ¢ between Equations (7.6.7) and (7.6.8), leads to

3ca? 3 2 3y
"= =— — == 7.6.9
Y 2y 2z y 2z ( )

At the point (z,y), if any curve intersects orthogonally, then (if its slope is y’) we must have

;2
y = 3y
Solving this differential equation, we get
2
9 x
=—-——=+c
Y 3

Or equivalently, 32 + ””3—2 = c is a family of curves which intersects the given family F' orthogonally.
Below, we summarize how to determine the orthogonal trajectories.
Step 1: Given the family F(x,y,c) = 0, determine the differential equation,

Y = f(x,y), (7.6.10)

for which the given family F are a general solution. Equation (7.6.10) is obtained by the elimination of
the constant ¢ appearing in F(z,y,c) = 0 “using the equation obtained by differentiating this equation
with respect to x”.

Step 2: The differential equation for the orthogonal trajectories is then given by

V=) (7.6.11)

Final Step: The general solution of Equation (7.6.11) is the orthogonal trajectories of the given family.
In the following, let us go through the steps.
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Example 7.6.12 Find the orthogonal trajectories of the family of stright lines
y=mx+1, (7.6.12)
where m is a real parameter.

Solution: Differentiating Equation (7.6.12), we get ¥’ = m. So, substituting m in Equation (7.6.12), we
have y = 3’z + 1. Or equivalently,

So, by the final step, the orthogonal trajectories satisfy the differential equation

, x
= . 7.6.13
V=1 ( )

It can be easily verified that the general solution of Equation (7.6.13) is
Py —2y=c, (7.6.14)

where ¢ is an arbitrary constant. In other words, the orthogonal trajectories of the family of straight

lines (7.6.12) is the family of circles given by Equation (7.6.14).

Exercise 7.6.13 1. Find the orthogonal trajectories of the following family of curves (the constant ¢
appearing below is an arbitrary constant).

2. Show that the one parameter family of curves y? = 4k(k + ), k € R are self orthogonal.

3. Find the orthogonal trajectories of the family of circles passing through the points (1, —2) and (1,2).

7.7 Numerical Methods

All said and done, the Picard’s Successive approximations is not suitable for computations on computers.
In the absence of methods for closed form solution (in the explicit form), we wish to explore “how

computers can be used to find approximate solutions of IVP” of the form

yl = f(xvy)a y(iEo) = Yo- (771)

In this section, we study a simple method to find the “numerical solutions” of Equation (7.7.1). The
study of differential equations has two important aspects (among other features) namely, the qualitative
theory, the latter is called ”Numerical methods” for solving Equation (7.7.1). What is presented here is
at a very rudimentary level nevertheless it gives a flavour of the numerical method.

To proceed further, we assume that f is a “good function” (there by meaning “sufficiently differen-

tiable”). In such case, we have

h2
ye+h)=y+hy + 50y + -
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Zo T i) Tn =T

Figure 7.1: Partitioning the interval

which suggests a “crude” approximation y(x + h) ~ y + hf(z,y) (if h is small enough), the symbol ~
means “approximately equal to”. With this in mind, let us think of finding y, where y is the solution of
Equation (7.7.1) with « > xo. Let h = T and define

x; =x9+1th, i=0,1,2,... n.

That is, we have divided the interval [z, z] into n equal intervals with end points zg, 21, ...,z = .
Our aim is to calculate y : At the first step, we have y(x + h) ~ yo + hf (xo,yo). Define y; =
yo + hf(xo,yo). Error at first step is

ly(xo + h) —y1| = Er.

Similarly, we define yo = y1 + hf(x1,y1) and we approximate y(zo + 2h) = y(z2) ~ y1 + hf(z1,y1) = yo
and so on. In general, by letting yx = yr—1 + hf(xx—1,yx—1), we define (inductively)

y(zo + (k+ 1)) = yrp+1 >~ yr + hf(zr, yi), k=0,1,2,....,n—1.

This method of calculation of y1,ys,...,y, is called the Euler’s method. The approximate solution of

Equation (7.7.1) is obtained by “linear elements” joining (zo,vo0), (z1,41),- -, (Tn, Yn)-

| 3
Y, YM
B Y Y
-y,
| | | | | | |
Xo Xy X, X3 Xy Xp1 X4

Figure 7.2: Approximate Solution
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Chapter 8

Second Order and Higher Order

Equations

8.1 Introduction

Second order and higher order equations occur frequently in science and engineering (like pendulum
problem etc.) and hence has its own importance. It has its own flavour also. We devote this section for

an elementary introduction.
Definition 8.1.1 (Second Order Linear Differential Equation) The equation
Py’ +q@)y +r(@)y =c(x), vel (8.1.1)

is called a SECOND ORDER LINEAR DIFFERENTIAL EQUATION.

Here I is an interval contained in R; and the functions p(-), ¢(:),r(:), and ¢(-) are real valued continuous
functions defined on R. The functions p(-), ¢(-), and r(-) are called the coefficients of Equation (8.1.1) and
¢(x) is called the non-homogeneous term or the force function.

Equation (8.1.1) is called linear homogeneous if ¢(x) = 0 and non-homogeneous if ¢(x) # 0.

Recall that a second order equation is called nonlinear if it is not linear.

y”—}—\/gsiny:()

is a second order equation which is nonlinear.

Example 8.1.2 1. The equation

2. y"” —y =0 is an example of a linear second order equation.
" / N : : :
3. ¥+ 9y 4+ y =sinx is a non-homogeneous linear second order equation.

4. ax®y” 4+ bxy +cy = 0 c # 0 is a homogeneous second order linear equation. This equation is called
EULER EQUATION OF ORDER 2. Here a,b, and c¢ are real constants.

Definition 8.1.3 A function y defined on I is called a solution of Equation (8.1.1) if y is twice differentiable
and satisfies Equation (8.1.1).

Example 8.1.4 1. ¢% and e~ % are solutions of 3/ —y = 0.
2. sinz and cosx are solutions of y” +y = 0.

1592
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We now state an important theorem whose proof is simple and is omitted.

Theorem 8.1.5 (Superposition Principle) Let y; and y2 be two given solutions of
p(@)y” +q(x)y +r(x)y =0, z€l. (8.1.2)
Then for any two real number ¢y, ¢o, the function ¢1y1 + cay9 is also a solution of Equation (8.1.2).

It is to be noted here that Theorem 8.1.5 is not an existence theorem. That is, it does not assert the

existence of a solution of Equation (8.1.2).

Definition 8.1.6 (Solution Space) The set of solutions of a differential equation is called the solution space.

For example, all the solutions of the Equation (8.1.2) form a solution space. Note that y(x) = 0 is
also a solution of Equation (8.1.2). Therefore, the solution set of a Equation (8.1.2) is non-empty. A
moments reflection on Theorem 8.1.5 tells us that the solution space of Equation (8.1.2) forms a real

vector space.

Remark 8.1.7 The above statements also hold for any homogeneous linear differential equation. That

is, the solution space of a homogeneous linear differential equation is a real vector space.

The natural question is to inquire about its dimension. This question will be answered in a sequence
of results stated below.

We first recall the definition of Linear Dependence and Independence.

Definition 8.1.8 (Linear Dependence and Linear Independence) Let I be an interval in R and let f,g:
I — R be continuous functions. we say that f, g are said to be linearly dependent if there are real numbers
a and b (not both zero) such that

af(t)+bg(t)=0 forall tel.
The functions f(-), g(-) are said to be linearly independent if f(-), g(-) are not linear dependent.

To proceed further and to simplify matters, we assume that p(z) = 1 in Equation (8.1.2) and that
the function ¢(z) and r(x) are continuous on 1.

In other words, we consider a homogeneous linear equation
y' +q(@)y +r(x)y=0, zel, (8.1.3)

where ¢ and 7 are real valued continuous functions defined on I.
The next theorem, given without proof, deals with the existence and uniqueness of solutions of

Equation (8.1.3) with initial conditions y(zo) = A, y'(x¢) = B for some zy € I.

Theorem 8.1.9 (Picard’s Theorem on Existence and Uniqueness) Consider the Equation (8.1.3) along
with the conditions
y(zo) = A, y'(x0) = B, for some zg € I (8.1.4)

where A and B are prescribed real constants. Then Equation (8.1.3), with initial conditions given by Equation
(8.1.4) has a unique solution on 1.

A word of Caution: NOTE THAT THE COEFFICIENT OF y” IN EQUATION (8.1.3) 1S 1. BEFORE
WE APPLY THEOREM 8.1.9, WE HAVE TO ENSURE THIS CONDITION.

An important application of Theorem 8.1.9 is that the equation (8.1.3) has exactly 2 linearly inde-
pendent solutions. In other words, the set of all solutions over R, forms a real vector space of dimension
2.
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Theorem 8.1.10 Let ¢ and r be real valued continuous functions on I. Then Equation (8.1.3) has exactly
two linearly independent solutions. Moreover, if y; and y2 are two linearly independent solutions of Equation

(8.1.3), then the solution space is a linear combination of y; and ys.

PROOF. Let y; and yo be two unique solutions of Equation (8.1.3) with initial conditions
y1(zo) =1, yi(x0) =0, and ya(xo) =0, ys(zo) =1 for some zq € I. (8.1.5)

The unique solutions y; and ys exist by virtue of Theorem 8.1.9. We now claim that y; and y2 are

linearly independent. Consider the system of linear equations

ay1(z) + Bya(z) =0, (8.1.6)

where o and 8 are unknowns. If we can show that the only solution for the system (8.1.6) is « = 8 =0,
then the two solutions y; and ys will be linearly independent.

Use initial condition on y; and y» to show that the only solution is indeed @ = 8 = 0. Hence the
result follows.

We now show that any solution of Equation (8.1.3) is a linear combination of y; and ys. Let ¢ be
any solution of Equation (8.1.3) and let d; = ((x¢) and da = ’(x¢). Consider the function ¢ defined by

P(z) = diy1(x) + day2(z).

By Definition 8.1.3, ¢ is a solution of Equation (8.1.3). Also note that ¢(z) = d; and ¢'(xg) = da. So, ¢
and ¢ are two solution of Equation (8.1.3) with the same initial conditions. Hence by Picard’s Theorem

on Existence and Uniqueness (see Theorem 8.1.9), ¢(z) = ((z) or
() = diyr(z) + daya().

Thus, the equation (8.1.3) has two linearly independent solutions. O

Remark 8.1.11 1. Observe that the solution space of Equation (8.1.3) forms a real vector space of

dimension 2.
2. The solutions y1 and yo corresponding to the initial conditions
yi1(zo) =1, yi(z0) =0, and wy2(xo) =0, ys(zo) =1 for some g € I,
are called a FUNDAMENTAL SYSTEM of solutions for Equation (8.1.3).

3. Note that the fundamental system for Equation (8.1.3) is not unique.

Consider a 2 x 2 non-singular matrix A = CCL Z with a,b,c,d € R. Let {y1,y2} be a fundamental
system for the differential Equation 8.1.3 and y* = [y1, ys]. Then the rows of the matrix Ay =
ay1 + bya
cy1 + dyo
system for Equation 8.1.3 then {ayi + by2,cyr + dya2} is also a fundamental system whenever
ad — bc = det(A) # 0.

also form a fundamental system for Equation 8.1.3. That is, if {y1, y2} is a fundamental

Example 8.1.12 {1,x} is a fundamental system for 3" = 0.

1 -1
Note that {1 — x,1 + x} is also a fundamental system. Here the matrix is [1 . ] .

Exercise 8.1.13 1. State whether the following equations are SECOND-ORDER LINEAR or SECOND-
ORDER NON-LINEAR equaitons.
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a) ¥/ +ysinz = 5.

(a)
(b) ¥+ (y')* +ysinz = 0.
() ¥ +yy' = -2

(d) (22 + 1)y” + (2% + 1)y’ — 5y = sinx.

2. By showing that y; = e and yo = e~ * are solutions of
Yy —y=0

conclude that sinhz and coshz are also solutions of 4 — 3y = 0. Do sinhz and coshz form a

fundamental set of solutions?

3. Given that {sinx, cosx} forms a basis for the solution space of ¢y’ + y = 0, find another basis.

8.2 More on Second Order Equations

In this section, we wish to study some more properties of second order equations which have nice

applications. They also have natural generalisations to higher order equations.

Definition 8.2.1 (General Solution) Let y; and y» be a fundamental system of solutions for
y' +q(x)y +r(x)y =0, zel (8.2.1)
The general solution y of Equation (8.2.1) is defined by
Yy =ciy1+coys, x €1
where ¢1 and co are arbitrary real constants. Note that y is also a solution of Equation (8.2.1).

In other words, the general solution of Equation (8.2.1) is a 2-parameter family of solutions, the

parameters being ¢, and cs.

8.2.1 Wronskian

In this subsection, we discuss the linear independence or dependence of two solutions of Equation (8.2.1).

Definition 8.2.2 (Wronskian) Let y; and y» be two real valued continuously differentiable function on an
interval I C R. For z € I, define

Y1 yll
Y2 yé
= Y1yh — Y1Ye-

W(yr,y2) =

W is called the Wronskian of y; and ys.

Example 8.2.3 1. Let y; = cosz and y2 =sinx, x € I C R. Then

sinx cosx

W(y1,y2) = =—1 forall z€l. (8.2.2)

cosr —sinx

Hence {cosx,sinx} is a linearly independent set.
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2. Let y; = 2%|z|, and y2 = 2® for z € (—1,1). Let us now compute y; and y. From analysis, we know
that y; is differentiable at z = 0 and

yi(z) = —32% if <0 andy(z)=32* if 2>0.

Therefore, for x > 0,

T 3 322
s = = = O
W (y1,92) D Rl I
and for z < 0,
/ 3 2
Y1 Yh —z° =3z
[/l/ s = = = O
(yl y2) ) y/2 CEB 31’2

That is, for all z € (—1,1), W(y1,y2) =0.
It is also easy to note that y1, yo are linearly independent on (—1,1). In fact,they are linearly independent

on any interval (a,b) containing 0.

Given two solutions y; and y2 of Equation (8.2.1), we have a characterisation for y; and y2 to be

linearly independent.

Theorem 8.2.4 Let I C R be an interval. Let y; and y2 be two solutions of Equation (8.2.1). Fix a point
xo € I. Then for any x € I,

x

W (g1, y2) = W (51, y2) (o) exp(~ / ¢(s)ds). (3.2.3)

Zo

Consequently,
W (y1,y2)(x0) # 0 <= W(yy,y2) #0 forall ze€l.

PRrROOF. First note that, for any x € I,

W (y1,y2) = y1ys — Y1Y2-

So
%W(yl,yg) = 1Yz — Y Y2 (8.2.4)
= y1 (—q(@)yy —r(x)y2) — (—q(2)y; — 7(x)y1) y2 (8.2.5)
= q(@)(y1y2 — v195) (8.2.6)
= —q@)W(y1,12). (8.2.7)

So, we have
xr

W(y1,y2) = W(y1,92)(zo) eXp(—/ q(s)ds).

o
This completes the proof of the first part.

The second part follows the moment we note that the exponential function does not vanish. Alter-
natively, W (y1,y2) satisfies a first order linear homogeneous equation and therefore

W (y1,y2) =0 if and only if W (y1,y2)(z0) = 0.

O

Remark 8.2.5 1. If the Wronskian W (y1,y2) of two solutions y1,ys of (8.2.1) vanish at a point
xo € I, then W (y1,y2) is identically zero on I.
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2. If any two solutions y1,y2 of Equation (8.2.1) are linearly dependent (on I), then W(y1,y2) =0
on I.

Theorem 8.2.6 Let y; and y2 be any two solutions of Equation (8.2.1). Let xo € I be arbitrary. Then y;

and y9 are linearly independent on I if and only if W (y1,y2)(x0) # 0.

PROOF. Let y1,y2 be linearly independent on 1.
To show: W (y1,y2)(zg) # 0.
Suppose not. Then W (y1,y2)(zo) = 0. So, by Theorem 2.6.1 the equations

c1y1(mo) + cay2(xo) =0 and 1y (wo) + cayh(zo) =0 (8.2.8)

admits a non-zero solution dy, ds. (as 0 = W (y1,y2)(x0) = y1(wo)ys(z0) — yi(zo)y2(x0).)
Let y = diy1 + day2. Note that Equation (8.2.8) now implies

y(z0) =0 and y'(z0) = 0.

Therefore, by Picard’s Theorem on existence and uniqueness of solutions (see Theorem 8.1.9), the solu-
tion y = 0 on I. That is, diy1 + daye = 0 for all x € I with |dq| 4 |d2| # 0. That is, y1,y2 is linearly
dependent on I. A contradiction. Therefore, W (y1,y2)(xo) # 0. This proves the first part.

Suppose that W (y1,y2)(xo) # 0 for some zy € I. Therefore, by Theorem 8.2.4, W (y1,y2) # 0 for all
x € I. Suppose that c1y1(z) + cay2(z) = 0 for all € I. Therefore, c1y}(z) + coys(z) = 0 for all z € I.
Since o € I, in particular, we consider the linear system of equations

c1y1 (o) + caya(z0) =0 and c1y](zo) + c2yh(xo) = 0. (8.2.9)

But then by using Theorem 2.6.1 and the condition W (y1,y2)(zo) # 0, the only solution of the linear
system (8.2.9) is ¢; = ¢a = 0. So, by Definition 8.1.8, y1, y2 are linearly independent. O

Remark 8.2.7 Recall the following from Example 2:
1. The interval I = (—1,1).
2. y1 = 2%|z|, yo = 23 and W (y1,y2) =0 for all z € I.
3. The functions y; and ys are linearly independent.

This example tells us that Theorem 8.2.6 may not hold if y; and ys are not solutions of Equation (8.2.1)

but are just some arbitrary functions on (—1,1).

The following corollary is a consequence of Theorem 8.2.6.

Corollary 8.2.8 Let y1,y2 be two linearly independent solutions of Equation (8.2.1). Let y be any solution
of Equation (8.2.1). Then there exist unique real numbers dy, ds such that

y =diy1 +day2 on I.

PROOF. Let zg € I. Let y(zo) = a, y'(zo) = b. Here a and b are known since the solution y is given.
Also for any xg € I, by Theorem 8.2.6, W (y1,y2)(zo) # 0 as y1,y2 are linearly independent solutions of
Equation (8.2.1). Therefore by Theorem 2.6.1, the system of linear equations

c1y1(wo) + coy2(x0) = a and Clyll (zo) + 0295(550) =b (8.2.10)

has a unique solution di, ds.

Define ((x) = dyy; + days for x € I. Note that ¢ is a solution of Equation (8.2.1) with ((z) = a and
¢'(x9) = b. Hence, by Picard’s Theorem on existence and uniqueness (see Theorem 8.1.9), ¢ = y for all
x € I. That is, y = d1y1 + days. O
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Exercise 8.2.9 1. Let y; and y2 be any two linearly independent solutions of y” + a(z)y = 0. Find
W(y1,y2)-

2. Let y1 and yo be any two linearly independent solutions of
y" +a(z)y +b(z)y =0, z € I.
Show that y; and y2 cannot vanish at any z = zy € [.
3. Show that there is no equation of the type
Yy +alx)y +b(x)y =0, x € [0, 27

admiting y; = sinx and y2 = = — 7 as its solutions; where a(z) and b(z) are any continuous functions
on [0,2n]. [Hint: Use Exercise 8.2.9.2.]

8.2.2 Method of Reduction of Order

We are going to show that in order to find a fundamental system for Equation (8.2.1), it is sufficient to
have the knowledge of a solution of Equation (8.2.1). In other words, if we know one (non-zero) solution
y1 of Equation (8.2.1), then we can determine a solution y, of Equation (8.2.1), so that {y1,y2} forms
a fundamental system for Equation (8.2.1). The method is described below and is usually called the
method of reduction of order.

Let y1 be an every where non-zero solution of Equation (8.2.1). Assume that y2 = u(z)y; is a solution
of Equation (8.2.1), where u is to be determined. Substituting y» in Equation (8.2.1), we have (after a
bit of simplification)

uyy + ' (2y) + pyr) +u(yy + pyy + qu) = 0.

By letting v’ = v, and observing that y; is a solution of Equation (8.2.1), we have
vy + o2y +py1) =0

which is same as
d

(1) = —p(vy?).

This is a linear equation of order one (hence the name, reduction of order) in v whose solution is

vy = ea:p(—/ p(s)ds), zo € I.

Zo

Substituting v = u’ and integrating we get

u:/ ! eajp(—/ p(t)dt)ds, xg € 1

o Ui (s) 2o

and hence a second solution of Equation (8.2.1) is

x 1 S
y2=y1/ —exp(—/ p(t)dt)ds.
o y%(s) Zo

It is left as an exercise to show that yi,y are linearly independent. That is, {y1,y2} form a funda-
mental system for Equation (8.2.1).
We illustrate the method by an example.
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1
Example 8.2.10 Given that e y; = —, x > 1 is a solution of
X

22y + 4y’ + 2y = 0, (8.2.11)

determine another solution yo of (8.2.11), such that the solutions y1,y2, for & > 1 are linearly independent.

4
Solution: With the notations used above, note that g = 1, p(z) = —, and ya2(z) = u(z)y1(z), where u
X

u = /lwﬁexp(_/lsp(t)@ s

= /11 y%(s) exp(In(s*))ds

1

v g2 1
1 S x

is given by

where A and B are constants. So,

1 1 1 1

Since the term — already appears in y;, we can take yo = —- So, — and — are the required two linearly
x x x x

independent solutions of (8.2.11).

Exercise 8.2.11 In the following, use the given solution yi, to find another solution ys so that the two
solutions y; and y2 are linearly independent.

1. y"=0,y1=1, 2>0.

2.y 4+ 2y +y=0, y1 =%, z>0.
3. 2% —axy +y=0,y1 =2, x> 1.
4. oy’ +y' =0, y1 =1, x> 1.

5. 9" +ay —y=0,y1 =z, x>1.

8.3 Second Order equations with Constant Coefficients
Definition 8.3.1 Let a and b be constant real numbers. An equation

y' +ay +by=0 (8.3.1)
is called a SECOND ORDER HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENTS.

Let us assume that y = e** to be a solution of Equation (8.3.1) (where ) is a constant, and is to be

determined). To simplify the matter, we denote

L(y)=y" +ay +by
and

p(\) = A* +aX +b.

It is easy to note that
L(eM) = p(\)er®.

Az

Now, it is clear that e** is a solution of Equation (8.3.1) if and only if

p(A) =0. (8.3.2)
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Equation (8.3.2) is called the CHARACTERISTIC EQUATION of Equation (8.3.1). Equation (8.3.2) is a

quadratic equation and admits 2 roots (repeated roots being counted twice).

Case 1: Let A1, A2 be real roots of Equation (8.3.2) with A; # Ao.
Then e*? and e*2? are two solutions of Equation (8.3.1) and moreover they are linearly independent
(since Ay # X2). That is, {eM®, e*2?} forms a fundamental system of solutions of Equation (8.3.1).
Case 2: Let A\ = A2 be a repeated root of p(A) = 0.

Then p’(A1) = 0. Now,
d

dzx
But p’(A\1) = 0 and therefore,

(L(e¥)) = Lize) = p/(N)eX + ap(\)e.

L(zeM®) = 0.

)\11

Hence, eM® and ze™M® are two linearly independent solutions of Equation (8.3.1). In this case, we have

a fundamental system of solutions of Equation (8.3.1).
Case 3: Let A = a + i3 be a complex root of Equation (8.3.2).
So, a — i3 is also a root of Equation (8.3.2). Before we proceed, we note:

Lemma 8.3.2 Let y = u + iv be a solution of Equation (8.3.1), where u and v are real valued functions.
Then u and v are solutions of Equation (8.3.1). In other words, the real part and the imaginary part of a
complex valued solution (of a real variable ODE Equation (8.3.1)) are themselves solution of Equation (8.3.1).

PROOF. exercise. O

Let A = a + i be a complex root of p(A) = 0. Then
e**(cos(Bx) + isin(fx))

is a complex solution of Equation (8.3.1). By Lemma 8.3.2, y; = e** cos(fz) and yo = sin(Bz) are
solutions of Equation (8.3.1). It is easy to note that y; and yo are linearly independent. It is as good as
saying {e’* cos(Bx), e’ sin(Bz)} forms a fundamental system of solutions of Equation (8.3.1).

Exercise 8.3.3 1. Find the general solution of the follwoing equations.

2. Solve the following IVP's.

a) y'+y=0,y(0)=0, y(0) =1

b) " —y=0,y(0)=1, y'(0)=1.
y'+4y =0, y(0) = -1, y'(0) = -3.

d) v +4y' +4y =0, y(0) =1, y'(0) = 0.

(a)
(b)
()
(d)

3. Find two linearly independent solutions y; and y, of the following equations.
(a) y" =5y =0.
(b) y" + 6y" + 5y = 0.
(c) " +5y=0.
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(d) y” + 6y’ + 9y = 0. Also, in each case, find W (y1, y2).
4. Show that the IVP
y"+y=0,y(0)=0 and y'(0) =B
has a unique solution for any real number B.

5. Consider the problem
y"+y=0,y(0)=0 and y'(7) = B. (8.3.3)

Show that it has a solution if and only if B = 0. Compare this with Exercise 4. Also, show that if
B =0, then there are infinitely many solutions to (8.3.3).

8.4 Non Homogeneous Equations

Throughout this section, I denotes an interval in R. we assume that ¢(-),r(-) and f(-) are real valued
continuous function defined on I. Now, we focus the attention to the study of non-homogeneous equation

of the form
y' +a(@)y +r(x)y = f(2). (8.4.1)
We assume that the functions ¢(-),r(-) and f(-) are known/given. The non-zero function f(-) in
(8.4.1) is also called the non-homogeneous term or the forcing function. The equation

y" +q(@)y +r(x)y = 0. (8.4.2)

is called the homogeneous equation corresponding to (8.4.1).
Consider the set of all twice differentiable functions defined on I. We define an operator L on this
set by
L(y) =y" + q(x)y’ + r(z)y.
Then (8.4.1) and (8.4.2) can be rewritten in the (compact) form
Ly) = f (8.4.3)
L(y) = 0. (8.4.4)

The ensuing result relates the solutions of (8.4.1) and (8.4.2).
Theorem 8.4.1 1. Let y; and y2 be two solutions of (8.4.1) on I. Then y = y; — y2 is a solution of
(8.4.2).

2. Let z be any solution of (8.4.1) on I and let z; be any solution of (8.4.2). Then y = z+ z; is a solution
of (8.4.1) on I.

PRrROOF. Observe that L is a linear transformation on the set of twice differentiable function on I. We

therefore have
L(y1) = f and L(ya2) = f.

The linearity of L implies that L(y; — y2) = 0 or equivalently, ¥ = y1 — y2 is a solution of (8.4.2).
For the proof of second part, note that

L(z)=f and L(z)=0

implies that
L(z4+2z1)=L(z)+ L(z) = f.
Thus, y = z + 21 is a solution of (8.4.1). O

The above result leads us to the following definition.



8.4. NON HOMOGENEOUS EQUATIONS 163

Definition 8.4.2 (General Solution) A general solution of (8.4.1) on I is a solution of (8.4.1) of the form
Y=yn+yp, vl

where y, = c1y1 + c2y2 is a general solution of the corresponding homogeneous equation (8.4.2) and y, is
any solution of (8.4.1) (preferably containing no arbitrary constants).

We now prove that the solution of (8.4.1) with initial conditions is unique.

Theorem 8.4.3 (Uniqueness) Suppose that zg € I. Let y; and yo be two solutions of the IVP
v' +ay +ry=f, y(xo) =a, y'(x0) =0 (8.4.5)
Then y; =y, for all z € I.
PROOF. Let z = y; — y2. Then z satisfies
L(z) =0, z2(z0) =0, 2'(z0) =0.

By the uniqueness theorem 8.1.9, we have z = 0 on I. Or in other words, y; = ys on I. U

Remark 8.4.4 The above results tell us that to solve (i.e., to find the general solution of (8.4.1)) or the
IVP (8.4.5), we need to find the general solution of the homogeneous equation (8.4.2) and a particular
solution y, of (8.4.1). To repeat, the two steps needed to solve (8.4.1), are:

1. compute the general solution of (8.4.2), and

2. compute a particular solution of (8.4.1).

Then add the two solutions.

Step 1. has been dealt in the previous sections. The remainder of the section is devoted to step 2., i.e.,

we elaborate some methods for computing a particular solution y, of (8.4.1).

Exercise 8.4.5 1. Find the general solution of the following equations:

(a) ¥ + 5y’ = —5. (You may note here that y = —x is a particular solution.)

(b) ¥y’ —y = —2sinx. (First show that y = sinx is a particular solution.)
2. Solve the following IVPs:

(a) ¥ +y=2e", y(0) =0=14/(0). (It is given that y = e” is a particular solution.)

(b) y"—y =—2cosx, y(0)=0, y'(0) =1. (First guess a particular solution using the idea given in
Exercise 8.4.5.1b )

3. Let fi(z) and fa(x) be two continuous functions. Let y;'s be particular solutions of
V' +a@)y +r(@)y = file), i =12

where ¢(z) and r(x) are continuous functions. Show that y; + y2 is a particular solution of y” +
q(x)y" +r(@)y = fi(x) + fa(2).
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8.5 Variation of Parameters

In the previous section, calculation of particular integrals/solutions for some special cases have been
studied. Recall that the homogeneous part of the equation had constant coefficients. In this section, we
deal with a useful technique of finding a particular solution when the coefficients of the homogeneous
part are continuous functions and the forcing function f(z) (or the non-homogeneous term) is piecewise

continuous. Suppose y; and ys are two linearly independent solutions of
y" +q(@)y +r(z)y =0 (8.5.1)
on I, where ¢(z) and r(z) are arbitrary continuous functions defined on I. Then we know that
Y = c1y1 + C2y2
is a solution of (8.5.1) for any constants ¢; and co. We now “vary” ¢; and ¢y to functions of x, so that
y=u(x)yr +v(x)y2, v €I (8.5.2)

is a solution of the equation
Y +q(@)y +r(x)y = f(z), on I, (8.5.3)

where f is a piecewise continuous function defined on I. The details are given in the following theorem.

Theorem 8.5.1 (Method of Variation of Parameters) Let ¢(x) and r(z) be continuous functions defined
on I and let f be a piecewise continuous function on I. Let y; and y2 be two linearly independent solutions
of (8.5.1) on I. Then a particular solution y, of (8.5.3) is given by

Yp = —yl/%@)dm+yz/%@)da¢, (8.5.4)

where W = W (yy,y2) is the Wronskian of y; and ya. (Note that the integrals in (8.5.4) are the indefinite
integrals of the respective arguments.)

ProoF. Let u(x) and v(x) be continuously differentiable functions (to be determined) such that
Yp =uyr +vy2, €l (8.5.5)
is a particular solution of (8.5.3). Differentiation of (8.5.5) leads to
Yp = uyy + vys + u'yr + 0"y, (8.5.6)

We choose v and v so that
'y +v'ys = 0. (8.5.7)

Substituting (8.5.7) in (8.5.6), we have

Yy, = uyy + vy, and y, = uyy 4+ vyy +u'yy +0'ys. (8.5.8)
Since y, is a particular solution of (8.5.3), substitution of (8.5.5) and (8.5.8) in (8.5.3), we get
ulyy +q(@)yy + (@) +v(ys +q(@)ys +r(@)ye) +u'yh +0'ys = f(2).

As y; and ys are solutions of the homogeneous equation (8.5.1), we obtain the condition

u'yy +0'yh = f(z). (8.5.9)
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We now determine u and v from (8.5.7) and (8.5.9). By using the Cramer’s rule for a linear system of

equations, we get
o @ @) (8.5.10)

(note that y; and yo are linearly independent solutions of (8.5.1) and hence the Wronskian, W = 0 for
any « € I). Integration of (8.5.10) give us

u:—/méﬁx)dx and v:/%@)d‘r (8.5.11)

( without loss of generality, we set the values of integration constants to zero). Equations (8.5.11) and
(8.5.5) yield the desired results. Thus the proof is complete. O

Before, we move onto some examples, the following comments are useful.

Remark 8.5.2 1. The integrals in (8.5.11) exist, because yo and W (# 0) are continuous functions
and f is a piecewise continuous function. Sometimes, it is useful to write (8.5.11) in the form

eI, i)
= / W(s) °° e / W(s) "

0 0

where x € I and x is a fixed point in I. In such a case, the particular solution y, as given by

(8.5.4) assumes the form

Yp = —Y1 /; %ds + 42 /)in%ds (8.5.12)

0

for a fixed point x¢ € I and for any x € I.

2. Again, we stress here that, ¢ and r are assumed to be continuous. They need not be constants.

Also, f is a piecewise continuous function on I.

3. A word of caution. While using (8.5.4), one has to keep in mind that the coefficient of y" in (8.5.3)

is 1.

Example 8.5.3 1. Find the general solution of

1
1 - - >O.
vty 2+sinz’ =

Solution: The general solution of the corresponding homogeneous equation 3/ +y = 0 is given by
Yp = €1 COSXT + Co Sinx.

Here, the solutions y; = sinz and yo = cosz are linearly independent over I = [0,00) and W =
W (sinx, cosx) = 1. Therefore, a particular solution, y;, by Theorem 8.5.1, is

Y2 Y1
= - —d —d
Yp y1/2+sinx x+y2/2+sinx v

. CosST sinx
= smx/i,dx—&—cos;v/i,dx
2+ sinx 2+ sinx
1

= —sinc |n(2+sinx)+cosx(x—2/7,
2+sinz

dzx). (8.5.13)
So, the required general solution is

Yy =ci1cosx + casinx + yp

where y,, is given by (8.5.13).
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2. Find a particular solution of
22y — 22y + 2y =23, x> 0.

Solution: Verify that the given equation is

and two linearly independent solutions of the corresponding homogeneous part are y; = x and y2 = 22,

Here
2
W:W(x,x2):x X =22 x>0.
1 2z
By Theorem 8.5.1, a particular solution y, is given by
2%z 5o [z
Yp = —X = dr+x ?dx
3 3
- s
= 5 +x 5

The readers should note that the methods of Section 8.7 are not applicable as the given equation is
not an equation with constant coefficients.

Exercise 8.5.4 1. Find a particular solution for the following problems:

0 if 0<z<l
(a)y”+y=f(x)70§I§1Wheref(x):{l f o<t

(b) ¥ +y=2secx forallz e (0,%).
(c) ¥y’ =3y +2y=—2cos(e™ ™), z>0.
(d) 2%y" + a2y —y =2z, > 0.
2. Use the method of variation of parameters to find the general solution of

(a) y' —y=—e"forall z € R.
(b) ¥" +y =sinz for all x € R.

3. Solve the following IVPs:

0 if 0<z<1
1 if x>1.

(b) y" —y = |z| for all z € [-1, 00) with y(—1) =0 and y'(—1) = 1.

(@) v +y=f(x), x>0 where f(z) = { with (0) = 0 = ¢/(0).

8.6 Higher Order Equations with Constant Coefficients

This section is devoted to an introductory study of higher order linear equations with constant coeffi-
cients. This is an extension of the study of o0d order linear equations with constant coefficients (see,
Section 8.3).

The standard form of a linear nth

order differential equation with constant coefficients is given by

Ln(y) = f(x) on I, (8.6.1)
where
L= d
[ aldx"_l an_ldx an
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is a linear differential operator of order n with constant coefficients, a1, as, ..., a, being real constants
(called the coefficients of the linear equation) and the function f(x) is a piecewise continuous function
defined on the interval I. We will be using the notation ™ for the nth derivative of y. If f(x) =0, then
(8.6.1) which reduces to

L,(y)=0 on I, (8.6.2)

is called a homogeneous linear equation, otherwise (8.6.1) is called a non-homogeneous linear equation.

The function f is also known as the non-homogeneous term or a forcing term.

Definition 8.6.1 A function y defined on I is called a solution of (8.6.1) if y is n times differentiable and
y along with its derivatives satisfy (8.6.1).

Remark 8.6.2 1. If u and v are any two solutions of (8.6.1), then y = u — v is also a solution of
(8.6.2). Hence, if v is a solution of (8.6.2) and y, is a solution of (8.6.1), then u = v+ y, is a
solution of (8.6.1).

2. Let y1 and ya be two solutions of (8.6.2). Then for any constants (need not be real) ¢y, ca,

Y = c1Y1 + C2Y2
is also a solution of (8.6.2). The solution y is called the superposition of y; and ys.

3. Note that y = 0 is a solution of (8.6.2). This, along with the super-position principle, ensures that
the set of solutions of (8.6.2) forms a vector space over R. This vector space is called the SOLUTION
SPACE or space of solutions of (8.6.2).

As in Section 8.3, we first take up the study of (8.6.2). It is easy to note (as in Section 8.3) that for
a constant A,
L (e*) = p(N)e*
where,

pA) =N+ N 4y, (8.6.3)

Definition 8.6.3 (Characteristic Equation) The equation p(A) = 0, where p()) is defined in (8.6.3), is
called the CHARACTERISTIC EQUATION of (8.6.2).

Note that p()) is of polynomial of degree n with real coefficients. Thus, it has n zeros (counting with
multiplicities). Also, in case of complex roots, they will occur in conjugate pairs. In view of this, we

have the following theorem. The proof of the theorem is omitted.

Theorem 8.6.4 ¢ is a solution of (8.6.2) on any interval I C R if and only if \ is a root of (8.6.3)

1. If A1, A2, ..., A, are distinct roots of p(A) = 0, then

eklm, 6)\217 o eAnm

are the n linearly independent solutions of (8.6.2).

2. If Ay is a repeated root of p(A) = 0 of multiplicity k, i.e., A1 is a zero of (8.6.3) repeated k times, then

A

1T >\1LE
eMT xe™ ..

xk}—le>\1LE

)

are linearly independent solutions of (8.6.2), corresponding to the root A\; of p(\) = 0.
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3. If \; = a+iB is a complex root of p(A\) = 0, then so is the complex conjugate \; = a —i3. Then the

corresponding linearly independent solutions of (8.6.2) are
y1 = e**(cos(Bx) + isin(Bz)) and yo = e**(cos(Bz) — isin(Bz)).

These are complex valued functions of . However, using super-position principle, we note that

Y1+ Y2
2

= e cos(fx) and 2 2_ 92 _ pam sin(Bx)
i

are also solutions of (8.6.2). Thus, in the case of A\; = «a + i3 being a complex root of p(A) = 0, we

have the linearly independent solutions

e cos(fzr) and e sin(fz).

Example 8.6.5 1. Find the solution space of the differential equation

y/// _ 6y// _|_ lly/ _ 6y — O

Solution: Its characteristic equation is
p(A) =A% —6A% + 11\ — 6 = 0.

By inspection, the roots of p(A) = 0 are A = 1,2, 3. So, the linearly independent solutions are e?, €%, 3%

and the solution space is

{c1e” + c2e®® + 363" : ¢1,c0,c3 € R},
2. Find the solution space of the differential equation

y/// _ 2y// + y/ —0.

Solution: lts characteristic equation is
pA) =X —222 4 =0.

By inspection, the roots of p(A) =0 are A = 0,1, 1. So, the linearly independent solutions are 1, €%, ze*
and the solution space is

{c1 + co€” 4 c3xe” @ c1,c9,c5 € R},
3. Find the solution space of the differential equation

y@ 4+ 2y" 1y =0.

Solution: Its characteristic equation is
p(N) = A 4202+ 1=0.

By inspection, the roots of p(A\) = 0 are A = 4,4, —i, —i. So, the linearly independent solutions are

sinx, x sin x, cos x, x cos x and the solution space is

{c1sinx + ey cosx + cgxsinx + cux cosx @ ¢1,ca,c3,c4 € R}
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From the above discussion, it is clear that the linear homogeneous equation (8.6.2), admits 7 lin-

early independent solutions since the algebraic equation p(\) = 0 has exactly n roots (counting with

multiplicity).
Definition 8.6.6 (General Solution) Let y1,y2,...,y, be any set of n linearly independent solution of
(8.6.2). Then
Y =ciyr + Cy2 + -+ CnlYn
is called a general solution of (8.6.2), where ¢1,ca, ..., ¢, are arbitrary real constants.

Example 8.6.7 1. Find the general solution of ¢/ = 0.
Solution: Note that 0 is the repeated root of the characteristic equation \> = 0. So, the general
solution is

Yy =cC1 + Ccx + 03172.

2. Find the general solution of
"

v'+y" +y +y=0.

Solution: Note that the roots of the characteristic equation A + A2 + X+ 1 = 0 are —1, ¢, —i. So,
the general solution is

y=-cie ¥+ cosinz + c3cosz.

Exercise 8.6.8 1. Find the general solution of the following differential equations:

(@) v+ = 0.
(b) v + 5y’ — 6y = 0.
(c) ¥ +2y" +y=0.
2. Find a linear differential equation with constant coefficients and of order 3 which admits the following
solutions:

(a) cos,sinz and e=3%.

(b) e%,e?* and e3*.
(c) 1,e” and z.

3. Solve the following IVPs:
(@) ¥y =y =0, y(0)=0,y'(0) = 0,y"(0) = 0,y"(0) = 1.
(b) 2y +4" +2¢y +y =0, y(0)=0,4'(0) =1,4"(0) = 0.

4. Buler Cauchy Equations:

Let ag,a1,...,an—1 € R be given constants. The equation
dn 1 dn—ly
xndx_" +an_12" drn—1 +--+ay=0, zel (8.6.4)

is called the homogeneous Euler-Cauchy Equation (or just Euler's Equation) of degree n. (8.6.4) is also
called the standard form of the Euler equation. We define

dn n—1

"y
— N n—1
L(y) =T dzm +an—1x dxn_l

+ -+ apy.
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A

Then substituting y = 2, we get

LM =(MA=1) - A=n+1)+ a1 AA—1) - (A=n+2)+-+ag)z.
So, o is a solution of (8.6.4), if and only if
AA=1)---A=n+1D)+ap_ 1 XA —-1)---A=n+2)+---4+ay=0. (8.6.5)

Essentially, for finding the solutions of (8.6.4), we need to find the roots of (8.6.5), which is a polynomial
in A. With the above understanding, solve the following homogeneous Euler equations:

(a) 23y + 322%y" + 2zy’ = 0.

(b) z3y"" — 62%y"” + 11ay’ — 6y = 0.

(C) xSy/// _ 3:2y” 4 xy/ —y= 0.

For an alternative method of solving (8.6.4), see the next exercise.

5. Consider the Euler equation (8.6.4) with z > 0 and = € I. Let z = ¢’ or equivalently t = Inx. Let

D:%and d:d%.Then

dy _ dy)

dz dt
(b) using mathematical induction, show that 2"d"y = (D(D —1)--- (D — n+1))y(t).

(a) show that zd(y) = Dy(t), or equivalently z

(c) with the new (independent) variable ¢, the Euler equation (8.6.4) reduces to an equation with
constant coefficients. So, the questions in the above part can be solved by the method just

explained.

We turn our attention toward the non-homogeneous equation (8.6.1). If y, is any solution of (8.6.1)

and if yj, is the general solution of the corresponding homogeneous equation (8.6.2), then

Y=9Yn+Yp

is a solution of (8.6.1). The solution y involves n arbitrary constants. Such a solution is called the
GENERAL SOLUTION of (8.6.1).

Solving an equation of the form (8.6.1) usually means to find a general solution of (8.6.1). The
solution y, is called a PARTICULAR SOLUTION which may not involve any arbitrary constants. Solving
(8.6.1) essentially involves two steps (as we had seen in detail in Section 8.3).

Step 1: a) Calculation of the homogeneous solution y; and
b) Calculation of the particular solution yp,.

In the ensuing discussion, we describe the method of undetermined coefficients to determine y,. Note
that a particular solution is not unique. In fact, if y, is a solution of (8.6.1) and v is any solution of
(8.6.2), then yp, + u is also a solution of (8.6.1). The undetermined coefficients method is applicable for
equations (8.6.1).

8.7 Method of Undetermined Coefficients

In the previous section, we have seen than a general solution of
L,(y)=f(z) on I (8.7.6)
can be written in the form

Y = Yn T Yp,

where y, is a general solution of L,(y) = 0 and y, is a particular solution of (8.7.6). In view of this, in
this section, we shall attempt to obtain y, for (8.7.6) using the method of undetermined coefficients in

the following particular cases of f(x);
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1. f(z) = ke*®; k #0,a a real constant
2. f(z) =e* (kl cos(Bx) + ko sin(ﬁx)); ki,ko,a, B € R
3. f(z)=a™

Case I. f(z) = ke®®; k #0,a a real constant.
We first assume that « is not a root of the characteristic equation, i.e., p(a)) # 0. Note that L, (e**) =

p(a)e®®. Therefore, let us assume that a particular solution is of the form
Yp = Ae*?,
where A, an unknown, is an undetermined coefficient. Thus

Lu(yp) = Ap(a)e™.

k
Since p(a) # 0, we can choose A = o) to obtain
p(a

L, (yp) = ke®®.

k
Thus, y, = ——€** is a particular solution of L, (y) = ke®®.
p(a

Modification Rule: If « is a root of the characteristic equation, i.e., p(a) = 0, with multiplicity r,
(i.e., p(a) =p'(a) = --- = p~H(a) = 0 and p(") (a) # 0) then we take, y, of the form

and obtain the value of A by substituting y, in L, (y) = ke**.

Example 8.7.1 1. Find a particular solution of

Yy’ — 4y = 2e”.

Solution: Here f(z) = 2¢* with k = 2 and o = 1. Also, the characteristic polynomial, p(\) = \2 —4.
Note that v = 1 is not a root of p(A) = 0. Thus, we assume y, = Ae®. This on substitution gives

Ae® —4Ae” = 2" — —3Ae" = 2",
-2
So, we choose A = 3 which gives a particular solution as

—2e”
Yp = 3

2. Find a particular solution of
y/// _ 3y// + 3y/ —y = 2%

Solution: The characteristic polynomial is p(A\) = A3 —3A? + 3\ — 1 = (A — 1) and a = 1. Clearly,
p(1) =0 and A = o = 1 has multiplicity r = 3. Thus, we assume y, = Az®e®. Substituting it in the

given equation,we have
Ae” (2° +92° + 182+ 6) — 3Ae” (2 + 62° + 61)
+ 3Ae” (:E?’ + 3;102) — AzPe® = 2¢*.

z3e®

3

1
Solving for A, we get A = 3’ and thus a particular solution is y, =
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3. Find a particular solution of

Solution: The characteristic polynomial is p(\) = A3 — X and o = 2. Thus, using y, = Ae**, we get

1 1 . o e
A = —— = —, and hence a particular solution is y, = —.

ple) 6 6
4. Solve y"" —3y" + 3y —y = 2e**

Exercise 8.7.2 Find a particular solution for the following differential equations:
1. ¢y — 3y + 2y = €*.
2.y —9y=¢e3®
3.y =3y + 6y — Ay = e**

Case II. f(z) = e** (kl cos(Bx) + ko sin(ﬁx)); ki,ko,a, B €R
We first assume that « + 0 is not a root of the characteristic equation, i.e., p(a + i3) # 0. Here, we

assume that y, is of the form
yp = €** (A cos(Bz) + Bsin(Bz)),

and then comparing the coefficients of e** cosx and e** sinx (why!) in L, (y) = f(z), obtain the values

of A and B.
Modification Rule: If a+if is a root of the characteristic equation, i.e., p(a+i8) = 0, with multiplicity

r, then we assume a particular solution as
yp = 2"e**(Acos(Bz) + Bsin(Sz)),
and then comparing the coefficients in L,,(y) = f(z), obtain the values of A and B.

Example 8.7.3 1. Find a particular solution of

y" + 2y + 2y = 4e” sinx.

Solution: Here, « = 1 and = 1. Thus a 4+ i8 = 1 + 4, which is not a root of the characteristic
equation p(\) = A% + 2\ + 2 = 0. Note that the roots of p(\) = 0 are —1 £ .

Thus, let us assume y, = e* (Asinz 4+ B cosx). This gives us
(—4B +4A)e"sinz + (4B + 4A)e” cosx = 4e” sinz.

Comparing the coefficients of e” cosz and e* s1n:1: on both sides, we get A— B=1and A+ B =0.

On solving for A and B, we get A= —B = 5 So, a particular solution is y, = 62 (sinx — cosx) .

2. Find a particular solution of
y" +y =sinz.

Solution: Here, « =0 and 8 = 1. Thus a + i = i, which is a root with multiplicity » = 1, of the

characteristic equation p(\) = A2 + 1 = 0.

So, lety, = x (Acosz + Bsinx) . Substituting this in the given equation and comparing the coefficients
: 1 . L

of cosx and sinz on both sides, we get B = 0 and A = —5 Thus, a particular solution is y, =

-1
— X COSZ.



8.7. METHOD OF UNDETERMINED COEFFICIENTS 173

Exercise 8.7.4 Find a particular solution for the following differential equations:
1.y —y" +y —y=e"cosx.
2. y"" +2y" +y =sinz.
3. y" -2y + 2y =e®coszx.

Case IIL. f(z) = 2™
Suppose p(0) # 0. Then we assume that

Yp = Apz™ + 14m—1$m_1 +---4+ A4

and then compare the coefficient of 2* in L, (y,) = f(z) to obtain the values of A; for 0 <i < m.
Modification Rule: If A = 0 is a root of the characteristic equation, i.e., p(0) = 0, with multiplicity r,

then we assume a particular solution as
yp =" (Ama:m + A2 AO)
and then compare the coefficient of 2* in L, (y,) = f(z) to obtain the values of A; for 0 <i < m.

Example 8.7.5 Find a particular solution of

"no__,n ! 2

Y y +ty —y=z.

Solution: As p(0) # 0, we assume
Yp = A2I2 + Alx + A()

which on substitution in the given differential equation gives
—2A2 + (2A2$ + Al) — (A2$2 + Allf + Ao) = I2.

Comparing the coefficients of different powers of x and solving, we get A, = —1, A} = —2 and Ay = 0.
Thus, a particular solution is
Yp = —(z* + 2z).

Finally, note that if y,, is a particular solution of L, (y) = fi(z) and yp, is a particular solution of
L, (y) = fa(z), then a particular solution of

Ln(y) = k1f1(z) + ka2 f2(x)

is given by
Yp = k1Yp, + k2Yp, .

In view of this, one can use method of undetermined coefficients for the cases, where f(z) is a linear

combination of the functions described above.

Example 8.7.6 Find a particular soltution of

Yy’ +y = 2sinz + sin 2z.

Solution: We can divide the problem into two problems:

1. ¥ +y=2sinz.
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2. y" +y =sin2x.

For the first problem, a particular solution (Example 8.7.3.2) is y,, = 2 5 LCOST = —TcosT.

-1 . , ;
For the second problem, one can check that y,, = 3 sin(2x) is a particular solution.

Thus, a particular solution of the given problem is
1.
Ypy + Yp, = —TCOST — 3 sin(2z).

Exercise 8.7.7 Find a particular solution for the following differential equations:
L y" —y" +y —y=>5e®cosx + 10e®.
2.y 42y +y=ax+e ",
3. 9" + 3y — 4y = 4e” + e**.
4. y'" + 9y = cosx + 2% + 23
5. 9" —3y" + 4y’ = x? + e**sinzx.

6. y"" 4+ 4y + 6y" + 4y’ + 5y = 2sinx + 22.



Chapter 9

Solutions Based on Power Series

9.1 Introduction

In the previous chapter, we had a discussion on the methods of solving
y' +ay’ + by = f(z);

where a,b were real numbers and f was a real valued continuous function. We also looked at Euler
Equations which can be reduced to the above form. The natural question is:
what if a and b are functions of x?

In this chapter, we have a partial answer to the above question. In general, there are no methods of

finding a solution of an equation of the form
v +q(@)y +r(@)y = f(), vl

where ¢(x) and r(z) are real valued continuous functions defined on an interval I C R. In such a
situation, we look for a class of functions ¢(z) and r(x) for which we may be able to solve. One such

class of functions is called the set of analytic functions.

Definition 9.1.1 (Power Series) Let 2y € R and ag,aq,...,an,... € R be fixed. An expression of the type
> an(z — )" (9.1.1)
n=0

is called a power series in = around x(. The point z is called the center, and a,,'s are called the coefficients.

In short, ag,ai,...,an,... are called the coefficient of the power series and z( is called the center.
Note here that a,, € R is the coefficient of (z — x¢)™ and that the power series converges for z = zg. So,
the set

00
S={zeR: Z an(x — )" converges}
n=0

is a non-empty. It turns out that the set S is an interval in R. We are thus led to the following definition.

Example 9.1.2 1. Consider the power series

2 25 27
TTwtEowm Tt
. . (=)™
In this case, g = 0 is the center, ag = 0 and a9, = 0 for n > 1. Also, agpy1 = ————, n =
(2n +1)!
1,2,.... Recall that the Taylor series expansion around xy = 0 of sinz is same as the above power

series.

17K
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2. Any polynomial

ap+ a1z + asx? + - + apz”™

is a power series with g = 0 as the center, and the coefficients a,, = 0 for m > n + 1.

Definition 9.1.3 (Radius of Convergence) A real number R > 0 is called the radius of convergence of the
power series (9.1.1), if the expression (9.1.1) converges for all x satisfying

|z —zo| < R and R is the largest such number.

From what has been said earlier, it is clear that the set of points  where the power series (9.1.1) is
convergent is the interval (—R + xo, z¢ + R), whenever R is the radius of convergence. If R = 0, the
power series is convergent only at x = xg.

Let R > 0 be the radius of convergence of the power series (9.1.1). Let I = (—R+ zo, 0 + R). In

the interval I, the power series (9.1.1) converges. Hence, it defines a real valued function and we denote
it by f(z), i.e.,

flx) = Zan(x —x)", x € 1.
n=1

Such a function is well defined as long as x € I. f is called the function defined by the power series
(9.1.1) on I. Sometimes, we also use the terminology that (9.1.1) induces a function f on I.
It is a natural question to ask how to find the radius of convergence of a power series (9.1.1). We

state one such result below but we do not intend to give a proof.

o0
Theorem 9.1.4 1. Let > a,(x—xo)™ be a power series with center xy. Then there exists a real number

R > 0 such that

n=1
oo
Z an(z — o)™ converges for all = € (—R + zg, zo + R).
n=1

o0
In this case, the power series Y a,(z — o)™ converges absolutely and uniformly on
n=1

|z —zo| <7 forall r< R

and diverges for all = with
|z — zo| > R.

2. Suppose R is the radius of convergence of the power series (9.1.1). Suppose lim 3/|a,| exists and
n—aoo
equals /.

1

(a) If £#£0, then R = 7

(b) If £ =0, then the power series (9.1.1) converges for all z € R.

. L . An+1
Note that lim {/[a,| exists if lim |—“*| and
n—> o0 n—s o0 Ay,
. . An+1
lim {/|ap| = lim .
n—>oo | n| n—>oo A,

Remark 9.1.5 If the reader is familiar with the concept of limsup of a sequence, then we have a
modification of the above theorem.
In case, {/|a,| does not tend to a limit as n — oo, then the above theorem holds if we replace

im {/an| by lim sup Vlan|-
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o0
Example 9.1.6 1. Consider the power series > (x + 1)™. Here g = —1 is the center and a,, = 1 for all
n=0

n>0.So, {]a,| = /1 = 1. Hence, by Theorem 9.1.4, the radius of convergenceR = 1.

)n(x + 1)2n+1
(2n +1)!

-1
2. Consider the power series Z (
n>0

. In this case, the center is

(="

x9=—1, a, =0 forn even and agyy1 = m
n :

So,
lim *"%/|asp+1] =0 and  lim  *Y/]ag,| = 0.

Thus, lim 3{/|ay| exists and equals 0. Therefore, the power series converges for all x € R. Note that
n—oo

the series converges to sin(z + 1).

o0
3. Consider the power series 22" In this case, we have
n=1

asp, =1 and agp41 =0 forn=0,1,2,....

So,

lim ***%/|asps+1] =0 and  lim  *Y/]ag,| = 1.
n—-o0 n—ro0
o .
Thus, nh_)moo Y/|an| does not exist.

o0 o0
We let u = z%. Then the power series > 2?" reduces to > u". But then from Example 9.1.6.1, we
n=1 n=1

o0

learned that > u™ converges for all u with |u| < 1. Therefore, the original power series converges
n=1

whenever |z2| < 1 or equivalently whenever |z| < 1. So, the radius of convergence is R = 1. Note that

1 o0
1= E ? for x| < 1.
-z
n=1

4. Consider the power series E n"z". In this case, {/|a,| = ¥/n™ = n. doesn't have any finite limit as
n>0
n — 0o. Hence, the power series converges only for = 0.

" =0 and the

5. The power series E — has coefficients a,, = ot and it is easily seen that lim
n! n!

n—s00
n>0

power series converges for all x € R. Recall that it represents e”.

Definition 9.1.7 Let f : I — R be a function and 2y € I. f is called analytic around xg if there exists a
6 > 0 such that

f(z) = Z an(x — 20)™ for every x with |z — x¢| < 6.
n>0

That is, f has a power series representation in a neighbourhood of .

9.1.1 Properties of Power Series

Now we quickly state some of the important properties of the power series. Consider two power series

i an(x —x0)" and i b (z — x0)"
n=0 n=0
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with radius of convergence Ry > 0 and Ry > 0, respectively. Let F(x) and G(x) be the functions defined
by the two power series defined for all € I, where I = (=R + x0,zo + R) with R = min{R;, R2}. Note
that both the power series converge for all x € I.

With F(z), G(z) and I as defined above, we have the following properties of the power series.

1. EQUALITY OF POWER SERIES
The two power series defined by F(z) and G(z) are equal for all z € I if and only if

anp =0b, foralln=20,1,2,....
In particular, if Y an(z — x0)™ =0 for all z € I, then
n=0

ap, =0 forall n=0,1,2,....

2. TERM BY TERM ADDITION

For all x € I, we have

F(z)+G(x) = (an +bn)(x — 20)"

n=0
Essentially, it says that in the common part of the regions of convergence, the two power series

can be added term by term.

3. MULTIPLICATION OF POWER SERIES
Let us define

co = agbp, and inductively ¢, = Z Qn—jbj.
j=1
Then for all z € I, the product of F(z) and G(z) is defined by

oo

H(z) = F(2)G(z) = Y _ enla — z0)".

n=0
H(z) is called the “Cauchy Product” of F(z) and G(x).

Note that for any n > o, the coefficient of ™ in

Zajx—:zro (Zbk (x — xp) ) is cn:ian_jbj.
j=1

4. TERM BY TERM DIFFERENTIATION
The term by term differentiation of the power series function F'(x) is

o0
Z na,(x — )"
n=1

Note that it also has R; as the radius of convergence as by Theorem 9.1.4 lim {/|a,| = -R% and
n—r-o0

En Y na,| = hm Y n| hm Vian|=1- ]%
1

Let 0 < 7 < Ry. Then for all € (—r + o, zo + r), we have

n

d
da:F( Znanx—xo

In other words, inside the region of convergence, the power series can be differentiated term by

term.
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In the following, we shall consider power series with o = 0 as the center. Note that by a transfor-

mation of X =z — x, the center of the power series can be shifted to the origin.

Exercise 9.1.1 1. which of the following represents a power series (with center z indicated in the brack-

ets) in a7

(a)1—|—x2—|—x4—|—~-~+$2n—|—-~- (zg =0).
(b) 1+sinz + (sinz)? + -+ + (sinz)” + - - (o =0).
() 1+ afa| +aa?| + - +am|a" + - (w0 = 0).

2. Let f(x) and g(z) be two power series around xo = 0, defined by

R B . 22n+1
f@) = oty ) Gt
I2 I4 nxQn
and gle) = Iogrrg O

Find the radius of convergence of f(x) and g(x). Also, for each z in the domain of convergence, show
that

f'(@) =g(x) and g'(z)=—f(2).

[Hint: Use Properties 1,2,3 and 4 mentioned above. Also, note that we usually call f(zx) by sinx
and g(z) by cosz./

3. Find the radius of convergence of the following series centerd at xy = —1.

() 1+ (z+1)+ @t o g @D
(b) 1+ (x+1)+2(x+1)2+--+n(z+1)"+---.

9.2 Solutions in terms of Power Series
Consider a linear second order equation of the type
y" +a(z)y + b(x)y = 0. (9.2.1)

Let a and b be analytic around the point ¢y = 0. In such a case, we may hope to have a solution y in

terms of a power series, say
o0

Y= chxk. (9.2.2)

k=0
In the absence of any information, let us assume that (9.2.1) has a solution y represented by (9.2.2). We
substitute (9.2.2) in Equation (9.2.1) and try to find the values of ¢;’s. Let us take up an example for

illustration.

Example 9.2.1 Consider the differential equation
v ' +y=0 (9.2.3)

Here a(x) = 0, b(x) = 1, which are analytic around zy = 0.

Solution: Let
o0

Y= Z cnx”. (9.2.4)

n=0
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o0

Then ¢/ = Z ne,z™ 1 and ' = Y n(n — 1)c,z™ 2. Substituting the expression for y, v’ and y”
n=0

Equation (9. 2 3) we get

Z n(n — Depaz™ 2 + Z cpx” =0
n=0 n=0
or, equivalently
0=> "(n+2)(n+1)cnr2z" + Y cnz" =Y {(n+1)(n+2)cnsz+cnla™
n=0 n=0 n=0

Hence for allm =0,1,2,...,
(n+1)(n+2)cnta+c¢n =0 or cppa=—

Therefore, we have

Co = —%, C3 = _C_lgv
e = (1%, s = (—1)*%,
Con = (—1)n(2672)!v Con+1 = (‘Unﬁ'

Here, ¢y and ¢y are arbitrary. So,

n 2n+1

COZ +1Z 2n+

or y = ¢gcos(z) + ¢1sin(x) where ¢p and ¢; can be chosen arbitrarily. For ¢ = 1 and ¢; = 0, we get
y = cos(z). That is, cos(x) is a solution of the Equation (9.2.3). Similarly, y = sin(x) is also a solution of
Equation (9.2.3).

Exercise 9.2.2 Assuming that the solutions y of the following differential equations admit power series
representation, find y in terms of a power series.

1. y' = —y, (center at zo = 0).
2. y' =1+ y?, (center at mg = 0).
3. Find two linearly independent solutions of

(a) ¥ —y =0, (center at zg = 0).
(b) y"” + 4y = 0, (center at 2o = 0).

9.3 Statement of Frobenius Theorem for Regular (Ordinary)
Point

Earlier, we saw a few properties of a power series and some uses also. Presently, we inquire the question,

namely, whether an equation of the form
y' +a(x)y +b(x)y = f(z), el (9.3.1)

admits a solution y which has a power series representation around z € I. In other words, we are
interested in looking into an existence of a power series solution of (9.3.1) under certain conditions on

a(x),b(x) and f(x). The following is one such result. We omit its proof.
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Theorem 9.3.1 Let a(x),b(x) and f(z) admit a power series representation around a point x = zg € I,
with non-zero radius of convergence r1, 7o and 73, respectively. Let R = min{rq,r2,73}. Then the Equation

(9.3.1) has a solution y which has a power series representation around xo with radius of convergence R.

Remark 9.3.2 We remind the readers that Theorem 9.3.1 is true for Equations (9.3.1), whenever the
coefficient of y" is 1.

Secondly, a point xq is called an ORDINARY POINT for (9.3.1) if a(x),b(x) and f(x) admit power
series expansion (with non-zero radius of convergence) around x = xg. ¢ is called a SINGULAR POINT

for (9.3.1) if xy is not an ordinary point for (9.3.1).

The following are some examples for illustration of the utility of Theorem 9.3.1.

Exercise 9.3.3 1. Examine whether the given point zg is an ordinary point or a singular point for the
following differential equations.

a) (x—1)y" +sinzy =0, 9 = 0.

C

(a)

(b) yll + Slnzy — 0 1’0 — 0

(c) Find two linearly independent solutions of
(d)

d) (1 —22)y” —2zy +n(n+1)y=0, zg =0, n is a real constant.

2. Show that the following equations admit power series solutions around a given . Also, find the power

series solutions if it exists.

(@) v +y=0, o =0.
(b) zy” +y =0, 290 =0.
(c) y¥"+9y =0, zo =0.

9.4 Legendre Equations and Legendre Polynomials

9.4.1 Introduction

Legendre Equation plays a vital role in many problems of mathematical Physics and in the theory of

quadratures (as applied to Numerical Integration).

Definition 9.4.1 The equation
(1—2?)y" =22y +pp+ 1)y =0, ~1<z<1 (9.4.1)
where p € R, is called a LEGENDRE EQUATION of order p.

Equation (9.4.1) was studied by Legendre and hence the name Legendre Equation.
Equation (9.4.1) may be rewritten as
22, plp+1)

1’
— = 0.
Y oamY TasaY

and PP+ 1)
1— 22 1-—
with center at zg = 0 and with R = 1 as the radius of convergence). By Theorem 9.3.1, a solution y of

The functions are analytic around xo = 0 (since they have power series expressions

(9.4.1) admits a power series solution (with center at xp = 0) with radius of convergence R = 1. Let us
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o0

assume that y = > axz” is a solution of (9.4.1). We have to find the value of a;’s. Substituting the
k=0

expression for

y' = Z kapz® 1 and 3" = Z k(k — 1)apz*2
k=0 k=0

in Equation (9.4.1), we get

> Ak +1)(k+2)ars2 + ax(p— k) (p+k+ 1)} 2 = 0.

k=0
Hence, for £k =0,1,2,...
g — PR HEAT)
2 k+D(k+2)
It now follows that
ag = _1!7(11H'-1)ao7 as = _(p—légp+2)a1’
ay = =23, a5 = (—1)2 2=DE=3E+@H

3-4
_ (_1)2 P(P—2)(12'1)(P+3) ao,

etc. In general,

mP@—=2)---(p=2m+2)(p+1)(p+3)---(p+2m—1)

aam = (1) (2m)!

ao

and (- V- 3)-(p—2m+ D(p+2)(p+4)-(p + 2m)

(2m+1)!

It turns out that both ag and a; are arbitrary. So, by choosing ag = 1,a; =0 and ap = 0,a; = 1 in the

a2m+1 = (_1)m aj.

above expressions, we have the following two solutions of the Legendre Equation (9.4.1), namely,

=1 p(p2':‘ D2y 1y (»— 2m+2g2-7-n-)(!p+2m— D om (9.42)
and

Remark 9.4.2 y; and ys are two linearly independent solutions of the Legendre Equation (9.4.1). It
now follows that the general solution of (9.4.1) is

Y = c1y1 + Cay2 (9.4.4)

where c¢1 and co are arbitrary real numbers.

9.4.2 Legendre Polynomials

In many problems, the real number p, appearing in the Legendre Equation (9.4.1), is a non-negative

integer. Suppose p = n is a non-negative integer. Recall

(n—k)(n+k+1)

=— k=0,1,2,.... 9.4.5
Q42 (k+1)(l€+2) af, s Ly 4y ( )
Therefore, when k = n, we get
Opt2 = Qpig =+ + = Gpiom = -+ = 0 for all positive integer m.

Case 1: Let n be a positive even integer. Then y; in Equation (9.4.2) is a polynomial of degree n. In fact,

y1 is an even polynomial in the sense that the terms of y; are even powers of  and hence y; (—x) = y1 ().
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Case 2: Now, let n be a positive odd integer. Then y2(z) in Equation (9.4.3) is a polynomial of degree
n. In this case, y2 is an odd polynomial in the sense that the terms of y, are odd powers of z and hence
y2(—z) = —y2(z).

In either case, we have a polynomial solution for Equation (9.4.1).

Definition 9.4.3 A polynomial solution P,(z) of (9.4.1) is called a LEGENDRE POLYNOMIAL whenever
P,(1)=1.

Fix a positive integer n and consider P,(x) = ap + a1z + -+ - + a,2™. Then it can be checked that
P, (1) =1 if we choose
2n)!  1-3-5---(2n—1)
2n(n!)? n! '

Using the recurrence relation, we have

(n—1)n (2n — 2)!

=2 = T )™ T T 2n(n— 1)i(n — 2)!

by the choice of a,,. In general, if n — 2m > 0, then

(2n — 2m)!
2nml(n — m)!(n — 2m)!

Ap—2m = (_1)m

Hence,

M 2n — 2m)! —om
Z (=" 2”m!(T(L — m)!(n)— 2m)!xn i (94.6)

n= when n is odd.

where M = g when n is even and M =

Proposition 9.4.4 Let p = n be a non-negative even integer. Then any polynomial solution y of (9.4.1)
which has only even powers of z is a multiple of P, (z).

Similarly, if p = n is a non-negative odd integer, then any polynomial solution y of (9.4.1) which has only
odd powers of z is a multiple of P, (z).

PROOF. Suppose that n is a non-negative even integer. Let y be a polynomial solution of (9.4.1). By
(9.4.4)

Y = c1y1 + 2y,
where y; is a polynomial of degree n (with even powers of z) and y, is a power series solution with odd
powers only. Since y is a polynomial, we have co = 0 or y = ¢1y; with ¢; # 0.
Similarly, P, (z) = cjy1 with ¢} # 0. which implies that y is a multiple of P,(z). A similar proof holds

when n is an odd positive integer. O
We have an alternate way of evaluating P, (z). They are used later for the orthogonality properties

of the Legendre polynomials, P, (z)’s.

Theorem 9.4.5 (Rodrigués Formula) The Legendre polynomials P, (z) for n = 1,2, ..., are given by

1 4

= 2l dgn

P, (x) (% — 1) (9.4.7)
PROOF. Let V(z) = (z2 — 1)". Then LV (z) = 2na(2® — 1)~ or

(2% — 1)%1/(:1:) =2nx(x? — )" = 2naV (x).
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Now differentiating (n + 1) times (by the use of the Leibniz rule for differentiation), we get

dn+2 dn+1 (TL—I— 1)
2
dn+1
- ZnIWV(x) n(n + 1) V(z)=0.
By denoting, U(x) = l{“;—nnV(x), we have
(2 = 1DU" +U'{2(n+ 1)z —2nz} + U{n(n+1) = 2n(n+1)} = 0
or (1—zHU" —22U" +n(n+1)U = 0.

This tells us that U(x) is a solution of the Legendre Equation (9.4.1). So, by Proposition 9.4.4, we have

n

P, (z) =aU(z) = ad—(x2 —1)" for some «€R.
xn
Also, let us note that

ar d"

@1 = D+ 1)}

Tz —
= ( +1)" 4+ terms containing a factor of (x —1).

Therefore,
d’ﬂ
e — (2 -1)" . =2"n! or, equivalently
1 d»
—@*-1)" =1
2nn! dzn ( ) 1
and thus 1
P, — - 1"
(=) 2nn) dx"( )

Example 9.4.6 1. When n =0, Py(z) = 1.

1d
2. Whenn =1, Py(z) = d( -1 =u.
T
1 a2 S T 3, 1
3. Whenn:Z, PQ() 222'dx2( —1) :§{12$ —4}:§$ —5

One may observe that the Rodrigués formula is very useful in the computation of P, (z) for “small” values
of n.

Theorem 9.4.7 Let P,(x) denote, as usual, the Legendre Polynomial of degree n. Then

/1 P, (x)Pp,(z) de =0 if m #n. (9.4.8)

-1

PROOF. We know that the polynomials P, (x) and P, (x) satisfy

(1 —a®)PL(z)) +n(n+1)P,(z) = 0 and (9.4.9)
(1= 2P, (2)) +m(m+1)Py(z) = 0. (9.4.10)

Multiplying Equation (9.4.9) by P,,(z) and Equation (9.4.10) by P,(x) and subtracting, we get

(n(n+1) = m(m + 1)) Po(2) P (2) = (1 — 2?) P, (2)) Pa(z) — (1 — 2®)PL(2)) P ().
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Therefore,

1

(n(n+1) — m(m+1)) /_an(x)Pm(x)dx

— /(((1_x2)P7;(x))’Pn(x)—((1—x2)P,;(x))’Pm(x) da

-1

1 r=1
=~ [ =P @Pa)ds + (1 5P (@) Pale)
-1 r=—1
1 r=1
+ [ Q=P @) P (a)de + (1= )Pi()Pale)
—1 rz=—1
= 0.
Since n # m, n(n + 1) # m(m + 1) and therefore, we have
1
/ P, ()P (z) de =0 if m #n.
-1
U
Theorem 9.4.8 Forn=20,1,2,...
1
2
P2(z) do = : 9.4.11
| Py e = 2= (9.4.11)
PROOF. Let us write V(z) = (22 — 1)". By the Rodrigue’s formula, we have
1 1 2
1 dr dr
P2(z) do = —V(z)——V(z)dz.
[ rraras= [ (5] Vi)
h dr dr
Let us call I = / —V(z)=——V(z)dz. Note that for 0 < m < n,
dz™ dz™
21
dm dm
—V(-1)=—7V(1) =0. 9.4.12
dx™ (1) dx™ (1) ( )

Therefore, integrating I by parts and using (9.4.12) at each step, we get

' /_1 T @) (C1)"V (o = 2 /_1(1 — 2?)"dz = (2n)! 2/0 (1—a%)"da.

™

2
Now substitute z = cos and use the value of the integral [ sin®" @ dh, to get the required result. [
0

We now state an important expansion theorem. The proof is beyond the scope of this book.

Theorem 9.4.9 Let f(x) be a real valued continuous function defined in [—1,1]. Then

f(z) = ZanPn(x), x €[-1,1]
n=0

1

/ F(2)Pa(2)dz.

-1

2n+1
2

where a,, =

Legendre polynomials can also be generated by a suitable function. To do that, we state the following

result without proof.



186 CHAPTER 9. SOLUTIONS BASED ON POWER SERIES

Theorem 9.4.10 Let P, (x) be the Legendre polynomial of degree n. Then

# 1. 9.4.13
Vi-2zt+ 82 Z ( )
. 1 . . Lo
The function h(t) = ——————= admits a power series expansion in ¢ (for small ¢) and the
V1 — 2zt 4 t2

coefficient of ¢ in P,(x). The function h(t) is called the GENERATING FUNCTION for the Legendre

polynomials.

Exercise 9.4.11 1. By using the Rodrigue's formula, find Py(z), P1(z) and P(z).
2. Use the generating function (9.4.13)

(a) to find Py(z), P1(z) and Pa(z).

(b) to show that P, (x) is an odd function whenever n is odd and is an even function whenevern is

even.

Using the generating function (9.4.13), we can establish the following relations:

n+1)Pyyi(z) = (@2n+1)z Py(z) —n P_1(x) (9.4.14)
nP,(z) = zP)(x)— P, _, () (9.4.15)
Pl (x) = zP)(z)+ (n+1)P.(z). (9.4.16)

The relations (9.4.14), (9.4.15) and (9.4.16) are called recurrence relations for the Legendre polyno-
mials, P, (z). The relation (9.4.14) is also known as Bonnet’s recurrence relation. We will now give the
proof of (9.4.14) using (9.4.13). The readers are required to proof the other two recurrence relations.

Differentiating the generating function (9.4.13) with respect to ¢ (keeping the variable x fixed), we
get

1
—5(1—2xt+t2)_% 2+ 2t) = ZnP L

Or equivalently,

(x —t)(1 —2at +t3) 77 = (1 — 22t + 12 ZnP L
n=0

We now substitute S P, ()t" in the left hand side for (1 — 2zt + t2)~2, to get
n=0

(x—t ZP = (1 -2zt +t?) ZnP L
n=0

The two sides and power series in ¢ and therefore, comparing the coefficient of t", we get
zP,(z) — Po—1(z) = (n+ 1)Pu(z) + (n — 1) Py—1(z) — 2n z P, (x).

This is clearly same as (9.4.14).

To prove (9.4.15), one needs to differentiate the generating function with respect to = (keeping ¢
fixed) and doing a similar simplification. Now, use the relations (9.4.14) and (9.4.15) to get the relation
(9.4.16). These relations will be helpful in solving the problems given below.

Exercise 9.4.12 1. Find a polynomial solution y(z) of (1 —2)y” — 22y’ + 20y = 0 such that y(1) = 10.

2. Prove the following:
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1
(@) [ Pn(x)dz =0 for all positive integers m > 1.
1

1
(b) [ @*" 1Py, (2)dz = 0 whenever m and n are positive integers with m # n.
1

1
(c) [ a™P,(x)dz =0 whenever m and n are positive integers with m < n.
1

n(n+1)

3. Show that P} (1) = ———= and P}(~1) = (cppr Mt

2
4. Establish the following recurrence relations.

(@) (n+1)Pu(z) = Py (z) — 2P ().

(b) (1 —a?)P)(z) = n[Po_1(z) — xPa(z)].
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Chapter 10

Laplace Transform

10.1 Introduction

In many problems, a function f(t), t € [a, b] is transformed to another function F'(s) through a relation

of the type:
b
F(s) = / K(t,s)f(t)dt

where K (t,s) is a known function. Here, F(s) is called integral transform of f(¢). Thus, an integral
transform sends a given function f(¢) into another function F'(s). This transformation of f(¢) into F(s)
provides a method to tackle a problem more readily. In some cases, it affords solutions to otherwise
difficult problems. In view of this, the integral transforms find numerous applications in engineering
problems. Laplace transform is a particular case of integral transform (where f(t) is defined on [0, c0)
and K (s,t) = e7%t). As we will see in the following, application of Laplace transform reduces a linear
differential equation with constant coefficients to an algebraic equation, which can be solved by algebraic
methods. Thus, it provides a powerful tool to solve differential equations.

It is important to note here that there is some sort of analogy with what we had learnt during the
study of logarithms in school. That is, to multiply two numbers, we first calculate their logarithms, add
them and then use the table of antilogarithm to get back the original product. In a similar way, we first
transform the problem that was posed as a function of f(¢) to a problem in F'(s), make some calculations
and then use the table of inverse Laplace transform to get the solution of the actual problem.

In this chapter, we shall see same properties of Laplace transform and its applications in solving

differential equations.

10.2 Definitions and Examples

Definition 10.2.1 (Piece-wise Continuous Function) 1. A function f(¢) is said to be a piece-wise con-
tinuous function on a closed interval [a,b] C R, if there exists finite number of points a =ty < t; <
ty < --- <ty = bsuch that f(t) is continuous in each of the intervals (¢;,_1, t;) for 1 < i < N and
has finite limits as ¢ approaches the end points, see the Figure 10.1.

2. A function f(t) is said to be a piece-wise continuous function for ¢ > 0, if f(¢) is a piece-wise continuous

function on every closed interval [a, b] C [0, c0). For example, see Figure 10.1.

Definition 10.2.2 (Laplace Transform) Let f : [0,00) — R and s € R. Then F(s), for s € R is called

101
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Figure 10.1: Piecewise Continuous Function

the LAPLACE TRANSFORM of f(t), and is defined by

L) = F(s) = [ e ar

whenever the integral exists.
b

oo oo b
(Recall that [ g(t)dt exists if lim [ g(t)d(t) exists and we define [ g(t)dt = lim [ g(¢)d(¢).)

Remark 10.2.3 1. Let f(t) be an EXPONENTIALLY BOUNDED function, i.e.,
|f(t)] < Me®* forall t>0 and for some real numbers o and M with M > 0.

Then the Laplace transform of f exists.

2. Suppose F(s) exists for some function f. Then by definition, blim fob f(t)e=stdt exists. Now, one
—00

can use the theory of improper integrals to conclude that

lim F(s)=0.

S§— 00

Hence, a function F(s) satisfying

lim F(s) does not exist or lim F(s) # 0,

§— 00 §— 00

cannot be a Laplace transform of a function f.

Definition 10.2.4 (Inverse Laplace Transform) Let L(f(t)) = F(s). Thatis, F(s) is the Laplace trans-
form of the function f(t). Then f(t) is called the inverse Laplace transform of F'(s). In that case, we write

f(t) = L7HE(s))-

10.2.1 Examples
Example 10.2.5 1. Find F(s) = L(f(t)), where f(t) =1, t > 0.

) —st|b 1 e—sb
Solution: F(s) = / e *'dt = lim =—— lim
0 b—oc0 —S§ 0 S b—o0 S
Note that if s > 0, then
—sb
lim =0.
b—oo S

Thus,
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In the remaining part of this chapter, whenever the improper integral is calculated, we will not explicitly
write the limiting process. However, the students are advised to provide the details.

2. Find the Laplace transform F(s) of f(t), where f(t) =t, t>0.
Solution: Integration by parts gives

* —1
F(s) = / testdt = —°
0 S

3. Find the Laplace transform of f(¢) =", n a positive integer.
Solution: Substituting st = 7, we get

F(s) = / e St dt
0

1 oo
= — e "t dr
Sn+l 0

n!

= Tl for s> 0.
S

4. Find the Laplace transform of f(t) = e%, t > 0.

Solution: We have
L(e™) = / e“te_Stdtz/ e~ (5matgy
0 0

1
= for s> a.
s—a

5. Compute the Laplace transform of cos(at), t > 0.
Solution:

L(cos(at)) = /Ooocos(at)e_“dt

oo e’} e—st
- / —asin(at) - dt
0 0

—st

= t
cos(at) —
1 (asin(at) e st

S S —S

—S

0 0o —st
cos(at) e™*®

_/ G2L—dt>
0 0 S —S

Note that the limits exist only when s > 0. Hence,

a? + 52
52

S

e 1
/ cos(at)e *'dt = =. Thus L(cos(at)) = ——; 5> 0.
0 S

a? + 52’
6. Similarly, one can show that

L(sin(at)) = 54—, s> 0.

1
7. Find the Laplace transform of f(t) = 7? t>0.

Solution: Note that f(¢) is not a bounded function near t = 0 (why!). We will still show that the
Laplace transform of f(t) exists.

/ e Stdt = / \/_ e " sT ( substitute 7 = st)

= T %e TdT——/ r2-le=7dr.
f/

L(—=)

Sl -
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Recall that for calculating the integral

o oo oo 2 oo
1
| e ey = ([T rae) = (5
0 0 0 2 0

It turns out that

o0
1 . .
/ 727 Le~Tdr, one needs to consider the double integral
0

1, _vE
NGEE

We now put the above discussed examples in tabular form as they constantly appear in applications

Thus, L( for s > 0.

of Laplace transform to differential equations.

ft) L(f(t)) ft) L(f(t))
1 1
1 - s>0 t -, §> 0
s s
n n! ut 1
t P s>0 e P s>a
in(at) a >0 (at) > >0
sin(a -, S cos(a -, §

52 + a2’ 52 4 a2’
inh(at) | —2 > h(at) i >
sinh(a —-— a ||| cosh(a - a

2 _gq2 ° 2 _q2 °
Table 10.1: Laplace transform of some Elementary Functions

10.3 Properties of Laplace Transform

Lemma 10.3.1 (Linearity of Laplace Transform) 1. Let a,b € R. Then

/Ooo(af(t) +bg(t))e*dt
= aLl(f(t)) +bL(g(t)).

L(af(t)+bg(t))

2. If F(s) = L(f(t)), and G(s) = L(g(t)), then
L7 (aF(s) +bG(s)) = af(t) + bg(t).

The above lemma is immediate from the definition of Laplace transform and the linearity of the

definite integral.

1. Find the Laplace transform of cosh(at).

eat +e—at
—— . Th
B) us

Example 10.3.2

Solution: cosh(at) =

L(cosh(at)) = s> al.

2. Similarly,
s> lal.

L(sinh(at)) =



10.3. PROPERTIES OF LAPLACE TRANSFORM 195

a 2a a 2a a

Figure 10.2: f(t)

1

3. Find the inverse Laplace transform of ——.
s(s+1)

Solution:

Thus, the inverse Laplace transform of is f(t)=1—e"".

1
s(s+1)

Theorem 10.3.3 (Scaling by a) Let f(¢) be a piecewise continuous function with Laplace transform F'(s).

Then for a >0, L(f(at)) = %F(Z).

PROOF. By definition and the substitution z = at, we get

L(f(at)) = /Oooe_“f(at)dt:%/Oooe_sif(z)dz
L (7 -2 pyae = Lp(2
- 5/0 e f(e)dz = < F(),

Exercise 10.3.4 1. Find the Laplace transform of
t? +at+b, cos(wt+0), cos’t, sinh®t;
where a, b, w and 6 are arbitrary constants.

2. Find the Laplace transform of the function f(-) given by the graphs in Figure 10.2.

1

I L(f(R)) = m +

251’ find f(t).

The next theorem relates the Laplace transform of the function f’(t) with that of f(¢).

Theorem 10.3.5 (Laplace Transform of Differentiable Functions) Let f(t), for ¢ > 0, be a differentiable
function with the derivative, f'(¢), being continuous. Suppose that there exist constants M and T such that
|f(t)] < Me* forall t > T. If L(f(t)) = F(s) then

L(f'(t)) =sF(s)— f(0) for s> a. (10.3.1)
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PRrROOF. Note that the condition |f(t)| < Me*t for all t > T implies that

lim f(b)e™** =0 for s> a.

b— 00
So, by definition,
b

L(f'(t) = /Oooe—stf’(t)dtz lim e SLF(t)dt

b— 00

0
b
— lim /0 f)(—s)e " dt

b
0 b— 00

—f(0) + sF(s).

= lim f(t)e

b— 00

O

We can extend the above result for nt!! derivative of a function f@), if f1(t),..., fO=D@), F(t)
exist and f(") (t) is continuous for ¢ > 0. In this case, a repeated use of Theorem 10.3.5, gives the

following corollary.

Corollary 10.3.6 Let f(t) be a function with L(f(t)) = F(s). If f'(t),..., " D (t), f™(t) exist and
f™(t) is continuous for ¢ > 0, then

L(F™ () = s"F(s) — s" L f(0) — s"72f'(0) — --- — f=D(0). (10.3.2)
In particular, for n = 2, we have
L(f"(t)) = s*F(s) — sf(0) — f'(0). (10.3.3)
Corollary 10.3.7 Let f’(t) be a piecewise continuous function for ¢ > 0. Also, let f(0) = 0. Then
L(f'(t) = sF(s) or equivalently L£~'(sF(s)) = f(t).
Example 10.3.8 1. Find the inverse Laplace transform of

s2+1°
) = sint. Then sin(0) = 0 and therefore, £~(

Solution: We know that £~( ) = cost.

1
s2+1 s2+1
2. Find the Laplace transform of f(t) = cos?(t).

Solution: Note that f(0) =1 and f/(¢t) = —2cost sint = —sin(2t). Also,

-2

Now, using Theorem 10.3.5, we get

Lemma 10.3.9 (Laplace Transform of tf(t)) Let f(¢) be a piecewise continuous function with £(f(t)) =
F(s). If the function F'(s) is differentiable, then

L{EF(1) = =< (s).

Equivalently, £7'(—

d
s
d
F(s) = ().
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PROOF. By definition, F(s) = / e 5! f(t)dt. The result is obtained by differentiating both sides with
0

respect to s. O

Suppose we know the Laplace transform of a f(¢) and we wish to find the Laplace transform of the
f(®)

function g(t) = - Suppose that G(s) = L(g(t)) exists. Then writing f(t) = tg(t) gives

F(s) = £(f(1) = L{tg(1)) = —-C(s).

Thus, G(s) = — [ F(p)dp for some real number a. As lim G(s) =0, we get G(s) = [ F(p)dp.

§— 00

Hence,we have the following corollary.

ft)

Corollary 10.3.10 Let £(f(t)) = F(s) and g(t) = et Then

Example 10.3.11 1. Find L(¢sin(at)).

2
Solution: We know L(sin(at)) = as

5. Hence L(tsin(at)) = [CEYOR

a
s24+a

2. Find the function f(t) such that F(s) =
1

(s—Dp

Solution: We know L(e!) = and

e (o) e ()

By lemma 10.3.9, we know that L(tf(t)) = —-LF(s). Suppose -F(s) = G(s). Then g(t) =
L71G(s) = L7V LF(s) = —tf(t). Therefore,

2
£ (%F(SO =Lt (d%G(SO = —tg(t) = t2f(t).
Thus we get f(t) = 2t%el.

Lemma 10.3.12 (Laplace Transform of an Integral) If F'(s) = L(f(t)) then

L[/Otf(f)df} iC

S

F
Equivalently, £~1 <ﬂ> = Otf(r)dr.
s
PRrROOF. By definition,

c(/otfm dr) :/OOOe-Sf (/Otfm dT> dtz/ooo/ote_Stf(T) drdt.

We don’t go into the details of the proof of the change in the order of integration. We assume that the

order of the integrations can be changed and therefore

/OOO/Ote_Stf(T) det:/OOO/TOOe_Stf(T) dt dr.
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Thus,
t oo t
L(| f(r)dr) = /0 /0 e S f(7) drdt

0 oo poo et f(r) dit dr — Y e~ £ (1) dt dr
[ /ol

[ e s ([T o)

/O°° e~ f(7)dr (/OOO e_szdz> - F(S);

Example 10.3.13 1. Find £(J} sin(az)dz).

Solution: We know L(sin(at)) = %. Hence

s2+a

t
E(/ sin(az)dz) = £ a = a
0 S

(s24a2) s(s2+a2)

t
2. Find L /7’2d7'

0
Solution: By Lemma 10.3.12

¢ L (2 !
E(/T2d7>: ():1-2—3:34.
0 s s s s

3. Find the function f(t) such that F(s) =

1
s—1

£ (ﬁ) — 4L (2;1) =4/OterT:4(et—1).

Lemma 10.3.14 (s-Shifting) Let L(f(t)) = F(s). Then L(e® f(t)) = F(s — a) for s > a.

s(s—1)°
Solution: We know L(e?) =

. So,

PROOF.

L(e"f(t) = /0 e“tf(t)e‘“dt=/0 F(t)e= =Dty

= F(s—a) 5> a.

Example 10.3.15 1. Find £(e* sin(bt)).

Solution: We know L(sin(bt)) = PR Hence L(e? sin(bt)) = Goar T
s s—a

2. Find £ (=525 ) -

Solution: By s-Shifting, if L(f(t)) = F(s) then L(e* f(t)) = F(s — a). Here, a = 5 and

—1 S -1 S 3
£ (W) =L (T) = cos(6).

Hence, f(t) = €5 cos(6t).
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10.3.1 Inverse Transforms of Rational Functions

Let F(s) be a rational function of s. We give a few examples to explain the methods for calculating the

inverse Laplace transform of F'(s).

Example 10.3.16 1. DENOMINATOR OF F HAS DISTINCT REAL ROOTS:

(s+1)(s+3)

If F(s)=—-———2 find f(¢).
6= GraeTs IO
3 1 35
Solution: F(s) = — . Th
olution: F(s) = 150+ 55y T s rs) MM
_ 3 L o 30 g
flit)y= 16+ 126 +48e .
2. DENOMINATOR OF F HAS DisTINcT COMPLEX ROOTS:
4s+ 3 .
s+1 1 2
Solution: F(s) =4 R . Thus,
olution: F(s) GIIT 2 2 Grif+l us
1
f(t) = 4e "t cos(2t) — §e_t sin(2t).
3. DENOMINATOR OF F' HAS REPEATED REAL ROOTS:
3s+4 .
If F(s)= find t).
&)= i rsrg M SO
Solution: Here,
F(s) 3s+4 3s+4 a n b n c
S) = = = .
(s+1)(s24+4s+4) (s+1)(s+2)?2 s+1 s+2 (s+2)?
Solving for a,b and ¢, we get F(s) = ﬁ — 54%2 + ﬁ = 54+1 — S_lﬂ + 2(% (—(SJF#Q)) Thus,

ft) =e t —e 2t 4 2te™ 2t

10.3.2 Transform of Unit Step Function

Definition 10.3.17 (Unit Step Function) The Unit-Step function is defined by

if <t
Ua(t):{o if 0< <a'

1 if t>a

Example 10.3.18 £(U,(t)) = /e‘“dt =S s>0

a

Lemma 10.3.19 (¢-Shifting) Let £(f(¢)) = F(s). Define g(t) by

(1) = 0 if 0<t<a
TW=Y ft—a) if t>a '

Then g(t) = Uy(t) f(t — a) and
L(g(t)) = e *F(s).
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(o) g

d a d+a

Figure 10.3: Graphs of f(t) and U,(t)f(t — a)

PROOF. Let 0 < ¢ < a. Then Uy(t) =0 and so, Ug(t)f(t —a) =0 = g(¢).
If t > a, then U,(t) = 1 and U,(t) f(t — a) = f(t — a) = g(¢). Since the functions ¢(t) and U, (t)f(t — a)
take the same value for all ¢ > 0, we have g(t) = Uy (t)f(¢t — a). Thus,

Llg(t)) = / e~tg(t)dt = / e f(t — a)dt
0 a
= eI rydt = e [ et f(t)dt
/ /
= e “F(s).

5s

Example 10.3.20 Find £ (57—

—5s

Solution: Let G(s) = 25— = e > F(s), with F(s) = 5——. Since s? —4s — 5 = (s — 2)? — 37
1 3 1
“HF(s) =L 5 ——=5——=5 | = = sinh(3t)e*".
LT (F(s))=L <3 (5—2)2—32> 5 sin (3t)e

Hence, by Lemma 10.3.19
L7H(G(s)) = % Us(t) sinh (3(t — 5)) 2=,

0 t<2m

Example 10.3.21 Find L(f(t)), where f(t) = { tcost t>2
cos .

Solution: Note that

(t — 2m) cos(t — 2m) + 2w cos(t — 2m) t > 2.

f(t):{o t <o

Thus, c(f(t)):e-2”((s2_1 yor—2 )

s2+1)2 Ts2 +1
Note: To be filled by a graph
10.4 Some Useful Results

10.4.1 Limiting Theorems

The following two theorems give us the behaviour of the function f(¢) when ¢t — 0% and when ¢t — occ.
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Theorem 10.4.1 (First Limit Theorem) Suppose L(f(t)) exists. Then

lim f(t)= lim sF(s).

t—0+ §—00

PrROOF. We know sF(s) — f(0) = L (f(t)) . Therefore

. _ . > —st g/
Jim 5P = SO+ Jim [ et
= JO+ [ tim et 0= 7).
as lim e st = 0. O

§— 00

Example 10.4.2 1. Fort >0, let Y(s) = L(y(t)) = a(1 + s?)~'/2. Determine a such that y(0) = 1.

Solution: Theorem 10.4.1 implies
. . as . a
1= Slﬂynoo SY(S) = SE)noo m = SE}IIOO W ThUS, a=1.

(s+1)(s+3)
s(s+2)(s+8) find £(07).

Solution: Theorem 10.4.1 implies

2. If F(s) =

o T G [ Ch I
FO7) = i sF(s) = lim s =

On similar lines, one has the following theorem. But this theorem is valid only when f(¢) is bounded

as t approaches infinity.

Theorem 10.4.3 (Second Limit Theorem) Suppose L(f(¢)) exists. Then

lim f(t) = lim sF(s)

t— o0 s—0

provided that sF'(s) converges to a finite limit as s tends to 0.
PRrooOF.

lim sF(s) = f(0)+ lim h e St f(t)dt

s—0 s—0 Jq
¢
: : —sT £/
f(O)—i—ShmOtgnoo ; e *Tf'(r)dr
¢

= f(0)+ lim lim e=*7 f'(r )dT:tE)n f@).

t— o0 0 s—0

2(s+3)

s(s+2)(s+8)
Solution: From Theorem 10.4.3, we have

Example 10.4.4 If F(s) = find lim f(t).
— 00

2
lim f(¢) = lim sF(s) = lim s.ﬂzizi
oo s—0 s—0  s(s+2)(s+8) 16 8

We now generalise the lemma on Laplace transform of an integral as convolution theorem.

Definition 10.4.5 (Convolution of Functions) Let f(¢) and g(¢) be two smooth functions. The convolu-

(f * o)t /f (t—7)d

tion, f % g, is a function defined by
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Check that

L (fxg)(t) =gx f(1).
2. If f(t) = cos(t) then (f % f)(t) = w

Theorem 10.4.6 (Convolution Theorem) If F'(s) = L(f(t)) and G(s) = L(g(t)) then

c [/Ot F(r)g(t — T)df} = F(s)- G(s).

1
Remark 10.4.7 Let g(t) = 1 for all t > 0. Then we know that L(g(t)) = G(s) = —. Thus, the
S
Convolution Theorem 10.4.6 reduces to the Integral Lemma 10.3.12.

10.5 Application to Differential Equations

Consider the following example.

Example 10.5.1 Solve the following Initial Value Problem:

af"(t) +bf'(t) + cf(t) = g(t) with f(0) = fo, f'(0) = fi.

Solution: Let £L(g(t)) = G(s). Then

G(s) = a(s*F(s) = sf(0) = f'(0)) + b(sF (s) = £(0)) + cF(s)
and the initial conditions imply

G(s) = (as® + bs + ¢)F(s) — (as +b) fo — afy.

Hence,
G(s as+b a
F(s) = 5 (=) + (2 Vo . h (10.5.1)
as®*+bs+c as®*+bs+c  as?+bs+c
non—homogeneous part initial conditions

Now, if we know that G(s) is a rational function of s then we can compute f(t) from F(s) by using the
method of PARTIAL FRACTIONS (see Subsection 10.3.1).

Example 10.5.2 1. Solve the IVP

t if 0<t<5
" g — By = f(t) = =
Y Y y=70 { t+5 if t>5

with y(0) = 1 and y'(0) = 4.

Solution: Note that f(t) =t + Us(t). Thus,

1 e
L(f(t) ==
(F@) = 5+

Taking Laplace transform of the above equation, we get

1 6—55

(s°Y(s) — sy(0) = /'(0)) — 4 (sY(s) —y(0)) = BY (s) = L(f(t)) = 21t
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Which gives

—oS8

S e”? 1
(s+1)(s—5) * s(s+1)(s—5) + s2(s+1)(s—5)
:1[5 N 1}+e—55{_§+ 5 N 1]

6|s—5H s+1 30 s s+1 s—5

1 30 24 25 1
m e |

I e —"

Hence,

5ebt et 1 e—(t—5) eS(t—S)
t - —_— —_— Ur —_—
y(?) 6 6 ()[5+ 6 30]

1 —t 5t
+ﬁ[ 30t + 24 — 25" + €]

Remark 10.5.3 Even though f(t) is a DISCONTINUOUS function at t = 5, the solution y(t) and y'(t)
are continuous functions of t, as y" exists. In general, the following is always true:
Let y(t) be a solution of ay” + by’ +cy = f(t). Then both y(t) and y'(t) are continuous functions of time.

Example 10.5.4 1. Consider the IVP ty”(t) + v/'(t) + ty(t) = 0, with y(0) = 1 and ’(0) = 0. Find

L(y(t)).
Solution: Applying Laplace transform, we have

—% [s*Y (s) — sy(0) — y'(0)] + (sY'(s) — y(0)) — —Y(s) =0.

Using initial conditions, the above equation reduces to

L+ 0¥ (s) — 5] ¥ (s) +1=0,

This equation after simplification can be rewritten as

Y(s) 241
Therefore, Y(s) = a(1 + 52)_%. From Example 10.4.2.1, we see that a = 1 and hence
Y(s) = (1+s%)73.
2. Show that y(t / f(r)g(t — 7)dr is a solution of

y"(t) +ay'(t) + by(t) = f(t), with y(0) =y'(0) = 0;

1
h t)) = ————.
where L[g(t)] JOR——
F 1
Solution: Hel’e, Y(S) = % = F(S) . m Hence,

y(t) = (frg)(t /f g(t — 7)dr.

3. Show that y(t / f(r)sin(a(t — 7))dr is a solution of

y'(t) +a®y(t) = f(t), with y(0)=y'(0) =0.
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. _ F(s) 1 a
Solution: Here, Y (s) = o R (F(s) o a2> . Hence,
1 , I .
y(t) = = f(t) *sin(at) = = | f(7)sin(a(t — 7))dr.
a a 0
4. Solve the following IVP.

¢
y'(t) = / y(r)dr +t —4sint, with y(0) = 1.
0

Solution: Taking Laplace transform of both sides and using Theorem 10.3.5, we get

Y(s) 1 4 1

sY(s)—1= . = 21

Solving for Y'(s), we get
s2—1 1 1
Cos(s2+1) s s2+1°
So,

¢
yt)=1- 2/ sin(7)dr =1+ 2(cost — 1) = 2cost — 1.
0

10.6 Transform of the Unit-Impulse Function

Consider the following example.

Example 10.6.1 Find the Laplace transform, Dj,(s), of

0 t<0
oh(t)=4¢ + 0<t<h
0 t>h.
1
Solution: Note that &;,(t) = E(Uo(t) — Up(t)). By linearity of the Laplace transform, we get
1,1—ehs
Di(s) = — (—5 ).
w(s) =+ (———)

Remark 10.6.2 1. Observe that in Example 10.6.1, if we allow h to approach 0, we obtain a new
function, say 6(t). That is, let
o(t) = lm d,(t).

h—0
This new function is zero everywhere except at the origin. At origin, this function tends to infinity.
In other words, the graph of the function appears as a line of infinite height at the origin. This
new function, 6(t), is called the UNIT-IMPULSE FUNCTION (or Dirac’s delta function).

2. We can also write .
0(t) = lim Oxp(t) = lim —(Uo(t) — Un(t)).
(t) = Jim 6u(t) = Tim = (Uo(r) ~ Un(1)
3. In the strict mathematical sense hlimo o (t) does not exist. Hence, mathematically speaking, d(t)
—
does not represent a function.

4. However, note that

/ Sp(t)dt =1, for all h.
0
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1 —hs

5. Also, observe that L(6,(t)) = %. Now, if we take the limit of both sides, as h approaches
s
zero (apply L’Hospital’s rule), we get
1— —hs —hs
L(6(t)) = lim c = lim = = 1.
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Chapter 11

Newton’s Interpolation Formulae

11.1 Introduction

In many practical situations, for a function y = f(x), which either may not be explicitly specified or
may be difficult to handle, we often have a tabulated data (z;,y;), where y; = f(z;), and x; < @41
for i = 0,1,2,..., N. In such cases, it may be required to represent or replace the given function by a
simpler function, which coincides with the values of f at the N 4+ 1 tabular points z;. This process is
known as INTERPOLATION. Interpolation is also used to estimate the value of the function at the non
tabular points. Here, we shall consider only those functions which are sufficiently smooth, i.e., they are
differentiable sufficient number of times. Many of the interpolation methods, where the tabular points
are equally spaced, use difference operators. Hence, in the following we introduce various difference
operators and study their properties before looking at the interpolation methods.

We shall assume here that the TABULAR POINTS xq,Z1,Z2,...,zN are equally spaced, i.e., xp —
Tp—1 = h for each k = 1,2,...,N. The real number h is called the STEP LENGTH. This gives us
xr = xo + kh. Further, y,. = f(xx) gives the value of the function y = f(x) at the kth tabular point.
The points y1,¥y2, ..., yn are known as NODES or NODAL VALUES.

11.2 Difference Operator

11.2.1  Forward Difference Operator

Definition 11.2.1 (First Forward Difference Operator) We define the FORWARD DIFFERENCE OPERA-
TOR, denoted by A, as

Af(x) = flz +h) = f(z).

The expression f(z + h) — f(x) gives the FIRST FORWARD DIFFERENCE of f(x) and the operator A is
called the FIRST FORWARD DIFFERENCE OPERATOR. Given the step size h, this formula uses the values
at x and z + h, the point at the next step. As it is moving in the forward direction, it is called the
forward difference operator.

Backward

-
| | | | | | |

X0 X Xp-1 Xk Xkl Xn
—_—

Forward

900
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Definition 11.2.2 (Second Forward Difference Operator) The second forward difference operator, AZ is
defined as

A%f(z) = A(Af(z)) = Af(z+h) — Af(z).

We note that

A f(x)

Af(z+h) - Af(z)
(f(x+2h)— f(x+h) = (flx+h) — f(z))
fl@+2h) =2f(z+h)+ f(x).

In particular, for z = x, we get,
Ayr = Yr+1 — Yk
and

A%y = Aypr1 — Ayk = Ykt — 2Ukt1 + Y-

Definition 11.2.3 (rth Forward Difference Operator) The rth forward difference operator, A" is defined
as

ATf(x) = A"Mf(x+h)— AT Hf(2), r=1,2,...,
with AVf(z) = f(x).

Exercise 11.2.4 Show that A3y, = A%(Ayi) = A(A2yg). In general, show that for any positive integers r

and m with r > m,

Example 11.2.5 For the tabulated values of y = f(x) find Ays and A3y,

il o] 1] 23| 4]cs
@ | 0 |01 |o02]03]o04]05
yi | 0.05 | 0.11 | 0.26 | 0.35 | 0.49 | 0.67

Solution: Here,
Ays =ys —y3 =049 —0.35=0.14, and

Alyy = A(A%y2) = A(ys — 2y3 + 2)
= (Y5 —ya) — 2(ya —y3) + (Y3 — ¥2)
= Y5 —3ys+3ys —y2
= 0.67—3x0.49+3x0.35—-0.26 = —0.01.

Remark 11.2.6 Using mathematical induction, it can be shown that

Ay = i(—l)r_j <;> Yk+j-

J=0

Thus the 0 forward difference at Yy uses the values at yi, Yk+1,-- -, Yktr-

Example 11.2.7 If f(z) = 2% + ax + b, where a and b are real constants, calculate A" f(x).
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Solution: We first calculate Af(z) as follows:

Af(z) = flx+h)—f(x)=[(x+h)?*+alz+h)+b] — [2* + az + b]
= 2zh+ h®+ah.
Now,
Af(z) = Af(x+h)—Af(x) =[2(x +h)h+ h* +ah] — [2zh + h* + ah] = 212,
and A3f(x) = A%f(z)— A%*f(x) =2h* — 2k = 0.

Thus, A" f(z) =0 for all r > 3.

Remark 11.2.8 In general, if f(z) = 2™ +aiz" a2+ -+a,_1x+a, is a polynomial of degree

n, then it can be shown that
A"f(z) =n!h" and A" f(x) =0 for r=1,2,....
The reader is advised to prove the above statement.

Remark 11.2.9 1. For a set of tabular values, the horizontal forward difference table is written as:

Zo o Ayo = y1 — Yo APyo=Ay1 —Ayo -+ Ayo=A""'y1 — A"y
1 Y1 Ay1 =y2 — APy = Ays — Ayy
o Y2 Ays = yz — Y2 APys = Ays — Ay

Tn-1 Yn-1 AYn—1=1Yn—Yn-1

Tn Yn

2. In many books, a diagonal form of the difference table is also used. This is written as:

Zo Yo
Ayo
T Y1 A?yo
Ayr A3y
x2 Y2 APy,
Ayn—1
Tn-2  Yn—2 APy,
Ayn—2 Agyn_g
Tn—1 Yn—1 A2yn—2
Ayn,1
Tn Yn

However, in the following, we shall mostly adhere to horizontal form only.

11.2.2 Backward Difference Operator

Definition 11.2.10 (First Backward Difference Operator) The FIRST BACKWARD DIFFERENCE OPER-
ATOR, denoted by V| is defined as

Vi) = flz) = flx—h)

Given the step size h, note that this formula uses the values at x and = — h, the point at the previous

step. As it moves in the backward direction, it is called the backward difference operator.
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Definition 11.2.11 (rth Backward Difference Operator) The rth backward difference operator, V", is
defined as

V'f(x) = V™7 lf(x) =V f(z—h), r=12,...,
with VU f(z) = f(x).

In particular, for x = x, we get
Ve = yk — Yr—1 and V3yp =y — 2yp1 + Y2
Note that V2y, = A2yp_s.
Example 11.2.12 Using the tabulated values in Example 11.2.5, find Vy4 and V3ys.
Solution: We have Vys = y4 — y3 = 0.49 — 0.35 = 0.14, and
Viys = Viys— V392 = (ys — 2y2 + 1) — (2 — 201 + o)

Y3 — 3y2 + 3y1 — Yo
= 035—-3x0.26+3x0.11 —0.05 = —0.15.

Example 11.2.13 If f(z) = 2% + ax + b, where a and b are real constants, calculate V" f(z).

Solution: We first calculate V f(z) as follows:

Vi) = fl@)—fle—h)=[2"+az+b] - [(x—h)*>+alz—h)+b]
= 2zh—h*+ah.
Now,
Vif(x) = Vf(z)—Af(x—h)=[2zh —h?+ah] — [2(x — h)h — h? + ah] = 212,
and  V3f(zx) = VZf(z) - V2f(x) =2h* —2h? = 0.

Thus, V" f(z) =0 for all r» > 3.

Remark 11.2.14 For a set of tabular values, backward difference table in the horizontal form is written

as:

Zo Yo
1 Y1 Vyr =y1 — o
T2 Y2 Vy2 =y2 — 11 V2y2 = Vy2 — Vi

ITn—2 Yn—2
Tn—1 Yn—1 vyn—l = Yn—1 — Yn—-2
Tn Yn vyn =Yn — Yn-—-1 szn = vyn - vyn—l R vnyn = Vn_lyn - vn_lyn—l

Example 11.2.15 For the following set of tabular values (z;,y;), write the forward and backward difference
tables.

x| 9 10 11 12 13 14
yi | 5.0 54 60 68 75 8.7

Solution: The forward difference table is written as
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y Ay A%y A3y Aty APy
9 5 04=54-5 02=06-04 0=0202 -3=-03-00 0.6=03-(-0.3)
10 54 0.6 0.2 0.3 0.3
11 6.0 0.8 0.1 0.0
12 68 0.7 0.1
13 75 06
14 8.1

In the similar manner, the backward difference table is written as follows:

y Vy Vi Viy Vi Vi
9 5
10 54 04
11 6 06 02
12 68 08 02 00
13 75 07 -01 -03 -0.3
14 81 06 -01 00 03 06

Observe from the above two tables that A3y, = V3yy, A2ys = V2y5 , Ay, = Viys ete.

Exercise 11.2.16 1. Show that A3y, = V3y,.
2. Prove that A(Vyk) = A2yk+1 = Vka_l.

3. Obtain V¥*y; in terms of 4o, 91,9, . .., yx. Hence show that V¥*y, = AFy,.
Remark 11.2.17 In general it can be shown that AFf(z) = V*f(z + kh) or A*y, = VFyrim

Remark 11.2.18 In view of the remarks (11.2.8) and (11.2.17) it is obvious that, if y = f(z) is a
polynomial function of degree n, then V" f(x) is constant and V1" f(z) = 0 for r > 0.

11.2.3 Central Difference Operator

Definition 11.2.19 (Central Difference Operator) The FIRST CENTRAL DIFFERENCE OPERATOR, de-
noted by J, is defined by

and the 7TH CENTRAL DIFFERENCE OPERATOR is defined as

@) = et g) -0 - )

with §Of(x) = f(x).

Thus, 62f(z) = f(x + h) — 2f(z) + f(x — h).
In particular, for @ = x, define y, 1 = flag + %), and y,_1 = flzy — %), then

Oy = Yprr — Yp—z and 0%y = Y1 — 24k + Yro1.

Thus, §2 uses the table of (z, yx). It is easy to see that only the even central differences use the tabular

point values (xg, yx)-
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11.2.4  Shift Operator

Definition 11.2.20 (Shift Operator) A SHIFT OPERATOR, denoted by F, is the operator which shifts the
value at the next point with step h, i.e.,

Ef(x) = f(x+h).

Thus,
Ey; = yit1, E*yi =yipe, and EFy; =y

11.2.5 Averaging Operator
Definition 11.2.21 (Averaging Operator) The AVERAGING OPERATOR, denoted by p, gives the average
value between two central points, i.e.,

Fat D)+ fe— .

N~

pwf(x) =
Thus py; = %(yi—s-% =+ yi_%) and

1 1
1y = B {Mbﬁ +Hyi—%} =1 [Yit1 + 2yi + yi—1].

11.3 Relations between Difference operators
1. We note that

Ef(x) = flz+h) =[flx+h)=flo)+[flz) =Af(2)+f(z)=(A+1)f(2)

Thus,

| E=1+A |0r A=F—1.

2. Further, V(E(f(z)) = V(f(z + h)) = f(z + h) — f(z). Thus,
(1 - V)Ef(z) = B(f(x) - V(E(f(x)) = f(z+ ) ~ [f@+ k) — [(2)] = {(2).
Thus E =1+ A, gives us
(1-V)(1+A)f(z) = f(z) forall z.

So we write,

1+A)1'=1-V or ‘ V=1-(1+A)""1 | and

(1-V)"'=1+A=E.
Similarly,
A=(1-V)"t -1
3. Let us denote by Ez f(x) = f(z + ). Then, we see that

5(0) = flo+ 5) — flz — 5) = B3 (@) - B~Hf(o).

Thus,

Recall,

0*f(z) = f(z+h) = 2f(x) + f(z = h) = [f(z + h) + 2f(2) + f(z — h)] = 4f (2) = 4(p* — 1) f ().
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So, we have,

12

/ 52
That is, the action of {/1 + v is same as that of u.

. We further note that,

N

+1 or L

M) = fla+h) — f@) = 57+ )~ 2f() + flo — )] + 57+ h) — fw— h)]
= P+ 5[+ h) )]
and
@) = 8|5{res 5o se- | = 50 - s+ (6@ - - 1))
= Sl +n) — f—n).
Thus,

Afe) = | 30°+ 0u] 1(0),

_12 _12 52
A= 4op= 50"+ 61+ .

In view of the above discussion, we have the following table showing the relations between various

i.e.

difference operators:

Exercise 11.3.1

1. Verify the validity of the above table.

E A \Y% )
E E A+1 (1-v)~! %52+5\/1+%+1
A E-1 A 1-Vv)'-1 %5%5@
V| 1-B7 [1-(1+V)! Y 12 +5\/1+ 162
§ | EV2—E-Y2 | AQ+A)"V2 | v(1—V)"1/2 5

2. Obtain the relations between the averaging operator and other difference operators.

3. Find A%yy, V2y,, 62y2 and u?ys for the following tabular values:

i| o 1 2 3 4
z; | 93.0 965 100.0 1035 107.0
v, | 113 1255 140 152  16.0

11.4 Newton’s Interpolation Formulae

As stated earlier, interpolation is the process of approximating a given function, whose values are known

at N +1 tabular points, by a suitable polynomial, Py(x), of degree N which takes the values y; at z = x;

for:=0,1,..

obtained.

., N. Note that if the given data has errors, it will also be reflected in the polynomial so

In the following, we shall use forward and backward differences to obtain polynomial function ap-

proximating y = f(x), when the tabular points z;’s are equally spaced. Let

f(z) = Py (x),
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where the polynomial Py (z) is given in the following form:

Py(z) = ao+ai(z—xo)+as(x —xo)(x—x1)+ - +ap(z —xo)(x —21) - (& — 2)—1)
+an(x —xo)(x — 1) - (x — TN—1). (11.4.1)
for some constants ag, a1, ...an, to be determined using the fact that Py(z;) =y; fori =0,1,...,N.

So, for ¢ = 0, substitute x = ¢ in (11.4.1) to get Py (xo) = yo. This gives us ag = yo. Next,
Py(z1) = y1 = y1 = ao + (x1 — zo)a1.
So, ay = e — AU By~ ivalent]
0, a; = L3740 = - or i =2, yo=ag+ (x2 —xg)ar + (x2 — x1)(x2 — 0)az, or equivalently

A
2h%as = yo — yo — 2h(%) =yo — 2y1 +yo = A?yo.

2

Thus, a; = 5 hy20' Now, using mathematical induction, we get
Ak
ay = ij; for k=0,1,2,...,N.
Thus,
A A2 AF
Pu(@) = yot+ S0 — o) + S @ = w0)(w — @) + oo (@ = w0) -+ (0~ mam)
ANyo
+N! N (x — xg)...(x —xN_1).

As this uses the forward differences, it is called NEWTON’S FORWARD DIFFERENCE FORMULA for inter-

polation, or simply, forward interpolation formula.

Exercise 11.4.1 Show that

Ay das — Ayo
ATV ER T 2
and in general,
Afyo
ar = T for k=0,1,2,...,N.
For the sake of numerical calculations, we give below a convenient form of the forward interpolation
formula.
Let u= I_xo, then

x—x1=hut+zo—(xo+h)=h(u—1),z —20 =h(u—2),...,2 —x = h(u— k), etc..

With this transformation the above forward interpolation formula is simplified to the following form:

A290
21 h2

Akyohk
k! h*

Pe(w) = w0t 2 +
N
]ﬁ! 5 [(hu) (h(u—1)) - (h(u— N+ 1))} .

{(hu)((u — 1)} + -+ [uu— 1) (u— k+1)]

2 k
= yo+Ayo(u)+A2!Z/0(u(u—1))+'~-+Ak!yO {u(u—l)"'(u—lﬁ—l)

N
. AN?O [u(u—l).,.(u—N+1)] (11.4.2)

If N=1, we have a linear interpolation given by

f(u) =~ yo + Ayo(u). (11.4.3)
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For N = 2, we get a quadratic interpolating polynomial:

()~ o+ Auo(u) + 22 u(u— 1) (11.4.4)

and so on.
It may be pointed out here that if f(x) is a polynomial function of degree N then Py(x) coincides
with f(x) on the given interval. Otherwise, this gives only an approximation to the true values of f(z).
If we are given additional point zx41 also, then the error, denoted by Ry (z) = |Pn(z) — f(x)], is

estimated by
AN+
~ —yo(x—:zro)~-~(:17—xN) .
RNHL(N + 1)!

Similarly, if we assume, Py (z) is of the form

Ry (2)

Py(x)=bo+bi(z—zn)+bi(z —an)(x—2zn_1)+ -+ bnv(x —2zn)(z —2N_1) (. — 271),

then using the fact that Py (z;) = y;, we have

bo = yn
b = gy —yno1) = =V
1=y YN —YN-1) = h YN
_ UN—2Yyn—aityn—2 1 o
b = 2h? = 22 (V)
L ok

Thus, using backward differences and the transformation x = zx + hu, we obtain the Newton’s
backward interpolation formula as follows:

ulu +1 uu+1)---(u+N -1
)=+ 5 KD ey e N

Exercise 11.4.2 Derive the Newton's backward interpolation formula (11.4.5) for N = 3.

V2yN+"'+ VNyN. (11.4.5)

Remark 11.4.3 If the interpolating point lies closer to the beginning of the interval then one uses the
Newton'’s forward formula and if it lies towards the end of the interval then Newton’s backward formula
is used.

Remark 11.4.4 For a given set of n tabular points, in general, all the n points need not be used for
interpolating polynomial. In fact N is so chosen that N th forward /backward difference almost remains

constant. Thus N is less than or equal to n.

Example 11.4.5 1. Obtain the Newton's forward interpolating polynomial, Ps(z) for the following tab-
ular data and interpolate the value of the function at z = 0.0045.

X 0 0.001 0.002 0.003 0.004 0.005
y 1121 1.123 1.1255 1.127 1.128 1.1285
Solution: For this data, we have the Forward difference difference table
i Yi Ayi A%y APy Aty Ay
0 1.121  0.002 0.0005 -0.0015 0.002 -.0025
.001 1.123 0.0025 -0.0010 0.0005 -0.0005
.002 1.1255 0.0015 -0.0005 0.0
.003 1.127 0.001 -0.0005
.004 1.128 0.0005
.005 1.1285
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Thus, for x = xg + hu, where g =0, h = 0.001 and u = %, we get

1 -2
Ps(z) = 1.121+ux.002+ %(.0005) + % x (—.0015)
) (u—2)(u—3 ) (- 2)(u—3)(u—4
Lty )(”4, Y =3) gy + “u =Dl 5),(“ =4 o02s).
Thus,
P5(0.0045) = Ps(0+0.001 x 4.5)
11214 0.002x 45+ 20900y gs o YOI s k25
+% X 4.5 x3.5x25x1.5— 0'?;55 X 4.5 x3.5x2.5x1.5x0.5
—  1.12840045.

2. Using the following table for tanz, approximate its value at 0.71. Also, find an error estimate (Note
tan(0.71) = 0.85953).

T 0.70 72 0.74 0.76 0.78
tanz; | 0.84229 0.87707 0.91309 0.95045 0.98926

Solution: As the point x = 0.71 lies towards the initial tabular values, we shall use Newton's Forward
formula. The forward difference table is:
X Yi Ay; Azyz‘ AB% A4yi

0.70 0.84229 0.03478 0.00124 0.0001 0.00001

0.72 0.87707 0.03602 0.00134 0.00011

0.74 0.91309 0.03736 0.00145

0.76 0.95045 0.03881

0.78 0.98926

In the above table, we note that A3y is almost constant, so we shall attempt 3rd degree polynomial
interpolation.
0.71 —0.70

Note that 9 = 0.70, h = 0.02 gives u = 0.02

polynomial of degree 3, we get

= 0.5. Thus, using forward interpolating

0.00124 0.0001
Ps () = 0.84229 + 0.03478u + ———u(u — 1) + —g—u(u — 1)(u — 2).

0.00124
Thus,  tan(0.71) ~ 0.84229+0.03478(0.5) + ——— x 0.5 x (~0.5)
0.0001
BT 0.5 x (=0.5) x (—1.5)
= 0.859535.

An error estimate for the approximate value is

A43/0
4!

u(u —1)(u—2)(u—3) = 0.00000039.

u=0.5
Note that exact value of tan(0.71) (upto 5 decimal place) is 0.85953. and the approximate value,
obtained using the Newton's interpolating polynomial is very close to this value. This is also reflected

by the error estimate given above.
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3. Apply 3rd degree interpolation polynomial for the set of values given in Example 11.2.15, to estimate
the value of f(10.3) by taking

Also, find approximate value of f(13.5).

Solution: Note that = 10.3 is closer to the values lying in the beginning of tabular values, while
x = 13.5 is towards the end of tabular values. Therefore, we shall use forward difference formula for
x = 10.3 and the backward difference formula for x = 13.5. Recall that the interpolating polynomial
of degree 3 is given by

A2 A3
£ (o + hu) = yo + Ayou+ =57 u(u — 1) + = ulu — 1)(u - 2).
Therefore,
10.3 - 9.0

(a) for o =9.0, h =1.0 and z = 10.3, we have u = = 1.3. This gives,

1

2 .
f(10.3) = 54+ .4x13+ 5(1.3) x .3+ 3—?(1.3) x .3 x (=0.7)

= 5.559.
10.3 - 10.0
(b) for g = 10.0, h = 1.0 and z = 10.3, we have u = — ] = .3. This gives,
2 -0.3
f(10.3) = 54+.6x.3+ 5(.3) x (=0.7) + 7(3) x (=0.7) x (=1.7)

= 5.54115.

Note: as x = 10.3 is closer to z = 10.0, we may expect estimate calculated using x¢p = 10.0 to

be a better approximation.
(c) for xg = 13.5, we use the backward interpolating polynomial, which gives,

2Z/N

2!

ASZ/N
3!

\%
flzn + hu) = yo + Vynu + u(u+1)+ w(u+1)(u+ 2).

13.5 — 14
Therefore, taking xy = 14, h = 1.0 and z = 13.5, we have u = —1 = —0.5. This gives,

FI35) ~ 8.1+4.6x (—05) + —L(_0.5) x 0.5+ %;?(—0.5) x 0.5 x (1.5)

2!
= 7.8125.

Exercise 11.4.6 1. Following data is available for a function y = f(z)
x 0 0.2 0.4 0.6 08 1.0
y 1.0 0.808 0.664 0616 0.712 1.0

Compute the value of the function at z = 0.3 and z = 1.1

2. The speed of a train, running between two station is measured at different distances from the starting
station. If x is the distance in km. from the starting station, then v(x), the speed (in km/hr) of the
train at the distance x is given by the following table:

x 0 50 100 150 200 250
v(x) 0 60 80 110 90 0

Find the approximate speed of the train at the mid point between the two stations.
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3. Following table gives the values of the function S(x) = [ sin(5t?)dt at the different values of the
0

tabular points x,

X 0 0.04 0.08 0.12 0.16 0.20
S(x) 0 0.00003 0.00026 0.00090 0.00214 0.00419

Obtain a fifth degree interpolating polynomial for S(x). Compute S(0.02) and also find an error estimate
for it.

Following data gives the temperatures (in °C') between 8.00 am to 8.00 pm. on May 10, 2005 in

Kanpur:
Time 8am 12noon 4 pm 8pm
Temperature 30 37 43 38

Obtain Newton's backward interpolating polynomial of degree 3 to compute the temperature in Kanpur
on that day at 5.00 pm.



Chapter 12

Lagrange’s Interpolation Formula

12.1 Introduction

In the previous chapter, we derived the interpolation formula when the values of the function are given
at equidistant tabular points xg,x1,...,zy. However, it is not always possible to obtain values of the
function, y = f(z) at equidistant interval points, z;. In view of this, it is desirable to derive an in-
terpolating formula, which is applicable even for unequally distant points. Lagrange’s Formula is one
such interpolating formula. Unlike the previous interpolating formulas, it does not use the notion of

differences, however we shall introduce the concept of divided differences before coming to it.

12.2 Divided Differences

Definition 12.2.1 (First Divided Difference) The ratio
f(@i) = f(z;)
Xr; — xj
for any two points z; and z; is called the FIRST DIVIDED DIFFERENCE of f(z) relative to x; and z;. It is

denoted by d[z;, z;].

Let us assume that the function y = f(z) is linear. Then §[x;, z;] is constant for any two tabular

points x; and x;, i.e., it is independent of z; and x;. Hence,

flzi) = f(x))

v —a; :5[$J7$1]

6[1‘i7$]‘] =

Thus, for a linear function f(z), if we take the points x,zo and x; then, §[xg, x| = §[xo, 21], i-e.,

f(z) = o)

:5[(1307$1].
T — X9

Thus, f(z) = f(2o) + (x — z0)d[zo, z1].

So, if f(z) is approximated with a linear polynomial, then the value of the function at any point x
can be calculated by using f(z) =~ Pi(x) = f(x0) + (# — x0)d[x0, 1], where 0[xo, x1] is the first divided
difference of f relative to zg and x7.

Definition 12.2.2 (Second Divided Difference) The ratio

[z, 2p] — Olwy, 2]

5[331'7553',17]@] = TE — T
K2

is defined as SECOND DIVIDED DIFFERENCE of f(z) relative to z;,z; and zj.

991
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If f(z) is a second degree polynomial then §[zg, 2] is a linear function of z. Hence,

Olws, k] = Olwi, 23] is constant

6[xivxjvxk] = TE — T
K2

In view of the above, for a polynomial function of degree 2, we have d[x, xg, x1] = 0[xq, x1, 22]. Thus,

6[‘:67 'IO] B 6[$07 xl]

= 5[170,171,172].
r — X

This gives,
0z, xo] = 8|0, 1] + (& — 21)0[20, 21, T2).

From this we obtain,
f(@) = f(zo) + (x — x0)d[mo, 21] + (¥ — o) (z — 21)6[20, 71, T2].

So, whenever f(z) is approximated with a second degree polynomial, the value of f(z) at any point

x can be computed using the above polynomial, which uses the values at three points zg, x1 and xs.

Example 12.2.3 Using the following tabular values for a function y = f(z), obtain its second degree poly-

nomial approximation.

i o] 1] 2
z; | 01 ]o016] 02
Flai) | 112 | 1.24 | 1.40

Also, find the approximate value of the function at z = 0.13.
Solution: We shall first calculate the desired divided differences.

Slzo,z1] = (1.24—1.12)/(0.16 — 0.1) = 2,
Sy, 2s] = (1.40—1.24)/(0.2—0.16) =4, and
Slao a1 ] = Tl ZO0 T o0 1) 2o,
T2 — Zo
Thus,
f(z) = Po(x) = 1.12+ 2(x — 0.1) + 20(z — 0.1)(x — 0.16).
Therefore

£(0.13) ~ 1.12 4 2(0.13 — 0.1) + 20(0.13 — 0.1)(0.13 — 0.16) = 1.162.

Exercise 12.2.4 1. Using the following table, which gives values of log(x) corresponding to certain values
of xz, find approximate value of log(323.5) with the help of a second degree polynomial.

x 3228 3242 325
log(z) | 2.50893 251081 2.5118

2. Show that
(o) f(z1) f(z2)

(w0 — 1) (0 —22) (21 —@0)(z1 —@2) (22— @0)(22 — 21)

5[55079617962] =

SO, 5[1‘0,$1,$2] = 5[1‘07$2,$1] = 5[1‘17$0,$2] = 5[1‘17$2,$0] = 5[1‘27$0,$1] = 5[1‘271'171'0]. That iS,
the second divided difference remains unchanged regardless of how its arguments are interchanged.
A’yg Vi

3. Show that for equidistant points zg, z1 and x2, d[xg,z1,22] = 5h2 = op2 where y, = f(xg),

andh:xl—xozzg—xl.
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4. Show that for a linear function, the second divided difference with respect to any three points, z;, x;

and xg, is always zero.

Now, we define the Eth divided difference.

Definition 12.2.5 (kM Divided Difference) The kTH DIVIDED DIFFERENCE of f(z) relative to the tab-

ular points xg, x1, ..., Tk, is defined recursively as

4 — ey T
6[I07$1, .o ,Ik] = [I17$2’ ’Iki.k — :['57007$17 s LTk 1] '

It can be shown by mathematical induction that for equidistant points,

Afyy  Vhy,
5[I0,I1,...,$k]: W = W (1221)
where, yo = f(z0),and h=21 —xg =22 —T1 =+ = Tf, — Th_1.
In general,
5[I’i7$i+17 ceey I’H—“] = nlhn B

where y; = f(z;) and h is the length of the interval for i =0,1,2,....

Remark 12.2.6 In view of the remark (11.2.18) and (12.2.1), it is easily seen that for a polynomial

function of degree n, the nth divided difference is constant and the (n+ l)th divided difference is zero.

Example 12.2.7 Show that f(x) can be written as
f(x) = f(z0) + d[z0, 21](T — 20) + [, 70, 1] (7 — W) (T — 21).
Solution:By definition, we have

6[567 'IO] B 6[$07 $1]

(x —z1)

6[I7$07$1] = )

so, O[x, xg] = 0[xo, 1] + (x — z0)d[z, o, 1]. Now since,

f(x) — f(zo)

8z, zo] = @ o)

we get the desired result.

Exercise 12.2.8 Show that f(z) can be written in the following form:
f(z) = Py(z) + Rs(x),

where, Pa(x) = f(xo) + 0[zo, x1](x — x0) + 0[z0, 1, x2|(z — o) (x — 1)
and Rs(x) = d[z, xo, x1, x2)(z — zo)(x — z1)(x — x2).
Further show that Pa(x;) = f(x;) for i =0, 1.

Remark 12.2.9 In general it can be shown that f(z) = P,(z) + Ry+1(z), where,

Po(z) = f(wo) + d[zo, m1)(x — m0) + 0[zo, 71, 22 (2 — w0) (2 — 1) + -+
+d[xo, 1, T2y .oy Tp) (T — o) (@ — 21) (T — 22) -+ (T — Tp1),
and Ryq1(2) = (. —zo)(x — z1)(x — 22) - - (. — x,)0[2, 20, T1, T2, . . ., Xy

Here, R, 11(x) is called the remainder term.

It may be observed here that the expression P, (x) is a polynomial of degree 'n’ and P, (x;) = f(x;)
fori=0,1,---,(n—1).

Further, if f(x) is a polynomial of degree n, then in view of the Remark 12.2.6, the remainder term,
R, +1(x) =0, as it is a multiple of the (n + 1)th divided difference, which is 0.
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12.3 Lagrange’s Interpolation formula

In this section, we shall obtain an interpolating polynomial when the given data has unequal tabular

points. However, before going to that, we see below an important result.

Theorem 12.3.1 The kth divided difference 0z, x1, ..., x| can be written as:
_ f (o) f(1)
ron e ml e e — e (om0 | (@ - a) (o)
f(zx)

Tt (xr —xo)(zk — 1) -+ (T — Th—1)

_ kf(IO) 4og kf(wl) 4oy kf(l’k)
1 (20 — ) T (w5 I ()
Jj=1 J=0, j#l J=0, j#k

ProOOF. We will prove the result by induction on k. The result is trivially true for £k = 0. For k =1,

f(xl)—f(xo): f (o) i f(x1)

T — To To—x1 Tl —To

6[I0,$1] =

Let us assume that the result is true for k = n, i.e.,

f(@o) f(z1)

(@0 — 21)(@o —@2) (0 —@n) | (21 — 20) (@1 — 2) -+ (31 — &)

f(zn)

(T — x0)(Tn — 1) - (T — Tp—1)

O[xo,x1,...,xn] =

Consider k = n + 1, then the (n + 1)th divided difference is

S[xo, 1, ..., Tnt1] = 5[“3173327"«»90;+i:i[:owh--wl“n]
_ flan) . f(z2)
Tnt1 — o [ (x1—22) - (X1 — Tnt1) (w2 —x1)(x2 —x3) - - (T2 — Tny1)
f(@n+1) } B 1 { f (o)
(In+1 - $1) ce (In+1 - zn) Tn+1 — o (zo - $1) c (CEO - In)
f(a1) f(a)
(z1 — @) (%1 — @2) - - - (T1 — Tn) Tt (T —20) -+ - (Tn — Tn—1)

which on rearranging the terms gives the desired result. Therefore, by mathematical induction, the

proof of the theorem is complete. O

Remark 12.3.2 In view of the theorem 12.3.1 the k' divided difference of a function f(z), remains
unchanged regardless of how its arguments are interchanged, i.e., it is independent of the order of its

arguments.

Now, if a function is approximated by a polynomial of degree n, then , its (n+ 1)th divided difference

relative to x, g, x1, ..., x, will be zero,(Remark 12.2.6) i.e.,
5[I7I03I17' --7$n] =0

Using this result, Theorem 12.3.1 gives
/(@) . (o)

(x—wo)(@—a1)- - (x—an)  (wo—x)(T0o —21) - (To — Tn)
f(z1)

(z1 — z)(x1 —22) - (1 — TN)

+ -+ =0,
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or,

f(z) _ f(@o) f(z1)

(@ —20)@ —a1) - (z — @) (@0 — @)@ —a1) (@0 —a) | (@1 — @) (@1 — z0) (w1 —72) - (@1 — @)

which gives ,
_ Eem)m)amw)
f(a) e sl e =)y,
(z —zo)(x—z1) - (T — Tp=1)
(zn — o) (Tn —21) -+ (T — Tp—1)

i=0 \ j=0, j#i i=0 (z—xl)_ H (zi — x5)
Jj=0, j#i
SRICEE)S [
=0 @z T (w-ay)
Jj=0, j#i

Note that the expression on the right is a polynomial of degree n and takes the value f(x;) at x = z;
fori=0,1,---,(n—1).
This polynomial approximation is called LAGRANGE’S INTERPOLATION FORMULA.

Remark 12.3.3 In view of the Remark (12.2.9), we can observe that P,,(x) is another form of Lagrange’s
Interpolation polynomial formula as obtained above. Also the remainder term R, 1 gives an estimate

of error between the true value and the interpolated value of the function.

Remark 12.3.4 We have seen earlier that the divided differences are independent of the order of its
arguments. As the Lagrange’s formula has been derived using the divided differences, it is not necessary
here to have the tabular points in the increasing order. Thus one can use Lagrange’s formula even
when the points xg,x1, - , Tk, - , Ly are in any order, which was not possible in the case of Newton’s
Difference formulae.

Remark 12.3.5 One can also use the Lagrange’s Interpolating Formula to compute the value of x for
a given value of y = f(x). This is done by interchanging the roles of x and y, i.e. while using the table
of values, we take tabular points as yi and nodal points are taken as xj.

Example 12.3.6 Using the following data, find by Lagrange’s formula, the value of f(z) at z =10

i o | 1 | 2 | 3 | 4
; 93 | 96 | 102 | 104 | 108
y; = f(z;) | 11.40 | 12.80 | 14.70 | 17.00 | 19.80

Also find the value of z where f(x) = 16.00.
Solution: To compute f(10), we first calculate the following products:

4 4
H(x—xj) H (10 — z;)

j=0
= (10 9.3)(10 — 9.6)(10 — 10.2)(10 — 10.4)(10 — 10.8) = —0.01792,
4 n n
xog—x;) = 0.4455, 1 —xi) = —0.1728, Ty — x;) = 0.0648,
J J J
j=1 =0, j#1 =0, j#2

—

&
|

m&

S~—
I

—0.0704, and II (@—=;)=o04320.
Jj=0, j#3 j=0, j#4
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Thus,
11.40 12.80 14.70
10) ~ —0.01792
1(10) x 0.7 x 0.4455 + 0.4 x (—0.1728) + (—0.2) x 0.0648
17.00 n 19.80
(—0.4) x (—=0.0704) = (—0.8) x 0.4320
= 13.197845.

Now to find the value of = such that f(z) = 16, we interchange the roles of = and y and calculate the

following products:

4 4
[He-v) = JJa6-y)
i=0 0

j:
= (16— 11.4)(16 — 12.8)(16 — 14.7)(16 — 17.0)(16 — 19.8) = 72.7168,

4 n n
(o—y;) = 2173248,  [[ Gn—w)=-78204, [ (v2—wy)=735471,
j=1 J=0, j#£1 3=0, j#2
Il ws—v) = —151.4688, and IT (va—vy) =839.664.
Jj=0, j#3 j=0, j#4

Thus,the required value of x is obtained as:

9.3 9.6 10.2
~  217.3248
* * [4.6 X 217.3248 3.2 x (—78.204) | 1.3 x T3.5471
N 10.40 N 10.80
(—1.0) x (—151.4688) ' (—3.8) x 839.664

Q

10.39123.

Exercise 12.3.7 The following table gives the data for steam pressure P vs temperature T":

383
210.0

390
240.0

T
P = f(T)

360
154.0

365
165.0

373
190.0

Compute the pressure at T' = 375.

Exercise 12.3.8 Compute from following table the value of y for z = 6.20 :

6.90
1.95

7.20
2.00

5.60
2.30

5.90
1.80

6.50
1.35

T

Y

Also find the value of x where y = 1.00

12.4 Gauss’s and Stirling’s Formulas

In case of equidistant tabular points a convenient form for interpolating polynomial can be derived from
Lagrange’s interpolating polynomial. The process involves renaming or re-designating the tabular points.
We illustrate it by deriving the interpolating formula for 6 tabular points. This can be generalized for
more number of points. Let the given tabular points be zg,z1 = x¢ + h,z2 = 9 — h,x3 = 29 + 2h, x4 =
xg — 2h, x5 = x9 + 3h. These six points in the given order are not equidistant. We re-designate them

for the sake of convenience as follows: z*, = x4,2" ;| = x2, 25 = 20,2} = 21,25 = 23,235 = x5. These
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re-designated tabular points in their given order are equidistant. Now recall from remark (12.3.3) that
Lagrange’s interpolating polynomial can also be written as :

f@) = f(zo) + d[zo, z1](z — wo) + 6[zo, 1, 22)(x — 20)(z — 21)
+o[xo, x1, T2, x3](x — xo) (x — 1) (T — T2)
+o[xo, 21, T2, T3, x4](x — 20)(x — 1) (T — 22) (T — x3)

+d[xo, 1, T2, T3, Ta, 5] (x — x0) (x — 1) (T — x2)(x — x3) (2 — 24),
which on using the re-designated points give:

f(x) = [fag) + Olzg, w)(2 — ap) + Slag, 21, 274 ](x — @) (v — a7)
+0[zg, a1, 22y, w3)(x — ap) (@ — 1) (x — aZy)
+0[wg, a1, wy, wy, 7o) (1 — ag) (v — 27)(z — 22y) (@ — 23)

oy @t oty ah ety 23] (0 — ) (@ — o) (x — 2ty (¢ — ) (x — a'y).

Now note that the points z*,, 2%, 2§, 27,25 and z3 are equidistant and the divided difference are

independent of the order of their arguments. Thus, we have

6[zg, 7] = Toa olzg, 7,22 ,] = 6[x, a5, 27] = oh2 17
* * * * * * * * ABy*—
Olzg, o7, 2Ly, 23] = 6[al, a5, 27, 3] = 3!—h317
* * * * * * * * * * A4yt
Olag, a1, @7y, w5, 1] = 62Ty, 27y, mg, @, @3] = W‘f’
* * * * * * * * * * * * A5y*—
6lzg, 27, 2ty a5, 2l a3] = [y, 2ty xg, 27, 25, 5] = W;’
where y¥ = f(x}) for i = —2,—1,0,1,2. Now using the above relations and the transformation =
g + hu, we get
. . Ay A%y Sy
flag+hu) ~ yi+ ho (hu) + =53 L(hu)(hu — h) + 3!h31 (hw)(hu — h)(hu + h)
A4yi2
A5y12
+ e (hu)(hu — h)(hu + h)(hu — 2h)(hu 4 2h).
Thus we get the following form of interpolating polynomial
AQ * AB *
Flas+hu) ~ g+ ulyl +u(u—1) 23’,—1 Fu(u? - 1) 33’,—1
A4y*_2 ASyi2

Fu(u? —1)(u—2) +u(u? —1)(u® — 2%) (12.4.1)

4! 5!

Similarly using the tabular points xg, 1 = xg—h, x2 = zo+h, x5 = ©9g—2h, x4 = x9+2h, x5 = 9—3h, and
the re-designating them, as z* 5, 2% 5, 2% |, 2§, 27 and x5, we get another form of interpolating polynomial
as follows:
Ay, 2 Ady*,

o +u(u®—1) 3l

A4y*_2 2 2 2 A5yi3
i +u(u® —1)(u” —2%) 5

flai+hu) =~ yi+uldy’y +u(u+1)

+u(u? —1)(u+2) (12.4.2)



228 CHAPTER 12. LAGRANGE’S INTERPOLATION FORMULA

Now taking the average of the two interpoating polynomials (12.4.1) and (12.4.2) (called GAUSS’S FIRST
AND SECOND INTERPOLATING FORMULAS, respectively), we obtain Sterling’s Formula of interpolation:

. . Ayz, + Ayg A?ytyu(u? — 1) [A%yE, 4+ Alyr,
flzg+hu) = yi+u 5 +u? o1 + 5 3
A4 * 2 1 2 22 A5 * A5 *
a2 — 1) f'_z N u(u )2(u ) { y_3; y—Q] b (1243)

These are very helpful when, the point of interpolation lies near the middle of the interpolating interval.

In this case one usually writes the diagonal form of the difference table.

Example 12.4.1 Using the following data, find by Sterling's formula, the value of f(z) = cot(mx) at x =
0.225 :

0.20
1.37638

0.21
1.28919

0.22
1.20879

0.23
1.13427

0.24
1.06489

f(x)

Here the point x = 0.225 lies near the central tabular point x = 0.22. Thus , we define x_5 = 0.20,z_1 =

0.21, 29 = 0.22, 21 = 0.23, 22 = 0.24, to get the difference table in diagonal form as:

T_2 =020 y_o=1.37638
Ay_g = —.08719

x_1 =.021 y_; =1.28919 A?y_5 = .00679
Ay_1 = —.08040 A3y_o = —.00091
zo = 0.22 yo = 1.20879 A2y_; =.00588 Aty_o =.00017
Ayg = —.07452 A3y_1 = —.00074
z1 = 0.23 y1 = 1.13427 A2y = .00514
Ay; = —.06938
xo = 0.24 y2 = 1.06489
(here, Ayg = y1 — yo = 1.13427 — 1.20879 = —.07452; Ay_; = 1.20879 — 1.28919 = —0.08040; and
AQy_l = Ayo — Ay_l = 00588, etc.).
. ., . 0.225 —0.22
Using the Sterling’s formula with u© = —o0l = 0.5, we get f(0.225) as follows:
—.08040 — .07452 .00588
f(0.225) = 1.20879+0.5 5 + (—0.5)? 5
—0.5(0.5% — 1) (—.00091 — .00074) = o o .00017
0.5°(0.5* — 1)———
2 3! ( ) 4!
= 1.1708457

Note that tabulated value of cot(mx) at x = 0.225 is 1.1708496.

Exercise 12.4.2 Compute from the following table the value of y for x = 0.05 :

0.00
0.00000

0.02
0.02256

0.04
0.04511

0.06
0.06762

0.08
0.09007

T

Y




Chapter 13

Numerical Differentiation and

Integration

13.1 Introduction

Numerical differentiation/ integration is the process of computing the value of the derivative of a function,
whose analytical expression is not available, but is specified through a set of values at certain tabular
points zg,z1,- - ,z, In such cases, we first determine an interpolating polynomial approximating the
function (either on the whole interval or in sub-intervals) and then differentiate/integrate this polynomial

to approximately compute the value of the derivative at the given point.

13.2 Numerical Differentiation

In the case of differentiation, we first write the interpolating formula on the interval (xg,x, ). and the
differentiate the polynomial term by term to get an approximated polynomial to the derivative of the
function. When the tabular points are equidistant, one uses either the Newton’s Forward/ Backward
Formula or Sterling’s Formula; otherwise Lagrange’s formula is used. Newton’s Forward/ Backward
formula is used depending upon the location of the point at which the derivative is to be computed. In
case the given point is near the mid point of the interval, Sterling’s formula can be used. We illustrate
the process by taking (i) Newton’s Forward formula, and (ii) Sterling’s formula.

Recall, that the Newton’s forward interpolating polynomial is given by

2 k
f(x) = f(wo+ hu) =~ yo+Ayou+A yO(U(U—l))—F---—FA yo{u(u—l)---(u—k+1)}

9l k!
A;yo {u(w—1)..(u—n+ 1)} (13.2.1)

Differentiating (13.2.1), we get the approximate value of the first derivative at x as

df o 1 df 1 AQyO Agyo 2

N A;yo (nun_l ~n(n—1)° w2 4 (=)D (- 1)!)} . (13.2.2)

T — X9
where, u = .

990
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Thus, an approximation to the value of first derivative at x = xg i.e. u = 0 is obtained as :

a4
dx

1 Ayo | Adyo (n—1) A"yo

T=IQ
Similarly, using Stirling’s formula:

Ayty +Ays  GA%NE u(u® — 1) Alyt, + A%yr,

flzg+hu) ~ yi+u 5 Ut 5 3l
A4 * 2 _ 1 2 _ 22 A5 * A5 *
Fud(? = 1) Y=2 u(u )(u ) ATy 4+ A%y, e (132.4)
41 2 5!
Therefore,
df Ldf 1 [Ay*; + Ay 9 (Bu? —1) (A3y*,+ Ady*y)
2 = - Ay®
dz hdu [ g Ut T X 31
Aty* (5ut — 15u? + 4)(ASy* 5 + Ady*,)
2 —2 -3 —2
F2u(2u? - 1) == + T +] (13.2.5)
Thus, the derivative at x = = is obtained as:
df LAy + Ay (1) (A3yr, + Alyry) 4 x (APyrq+ Adyry)
N ) B R 5.2 . (1326
a,_,. h{ > 5 3] N 2 % 5l * (13.2.6)

Remark 13.2.1 Numerical differentiation using Stirling’s formula is found to be more accurate than

that with the Newton’s difference formulae. Also it is more convenient to use.

Now higher derivatives can be found by successively differentiating the interpolating polynomials. Thus

e.g. using (13.2.2), we get the second derivative at © = ¢ as

&2 f

af 1
dx?

:h2

r=xo

2x 11 x Atyp

{A“’yo — APyo + n

Example 13.2.2 Compute from following table the value of the derivative of y = f(x) at x = 1.7489 :

x 1.73 1.74 1.75 1.76 177
y 1.772844100 1.155204006 1.737739435 1.720448638 1.703329888

Solution: We note here that zp = 1.75,h = 0.01, so v = (1.7489 — 1.75)/0.01 = —0.11, and Ayy =
—.0017290797, A%y, = .0000172047, A3y, = —.0000001712,

Ay_ = —.0017464571, A%y_; = 0000173774, A3y_; = —.0000001727,

A3y_y = —.0000001749, Aty_s = —.0000000022

Thus, f/(1.7489) is obtained as:

(i) Using Newton's Forward difference formula,

1 0.0000172047
f'(14978) ~ o [—0.0017290797+ (2% ~0.11 = 1) x =
—0.0000001712
+ (3% (=0.11)2 =6 x —0.11 + 2) x ——————=| = —0.173965150143.

3!
(i) Using Stirling’s formula, we get:

(—.0017464571) 4 (—.0017290797)
2
(3 x (=0.11)% — 1) ((—.0000001749) + (—.0000001727))

2 3!

—.0000000022
+ 2 x (=0.11) x (2(=0.11)% = 1) x %

+ (—0.11) x .0000173774

F/(1.4978) =~ % [

= —0.17396520185
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It may be pointed out here that the above table is for f(x) = e~®, whose derivative has the value
-0.1739652000 at x = 1.7489.

Example 13.2.3 Using only the first term in the formula (13.2.6) show that

oy o YT T Y

Hence compute from following table the value of the derivative of y = e® at . = 1.15 :

T 1.05 1.15 1.25
e® 2.8577 3.1582 3.4903

Solution: Truncating the formula (13.2.6)after the first term, we get:

h 2
W=yt + (Wi —wo)
2h
_ yi — vy
2h

Now from the given table, taking z§ = 1.15, we have

3.4903 — 2.8577

Note the error between the computed value and the true value is 3.1630 — 3.1582 = 0.0048.

Exercise 13.2.4 Retaining only the first two terms in the formula (13.2.3), show that

—3yo + 4y1 — Yo

f'(wo) 2h

Hence compute the derivative of y = e* at = 1.15 from the following table:

T 1.15 1.20 1.25
e® 3.1582 3.3201 3.4903

Also compare your result with the computed value in the example (13.2.3).

Exercise 13.2.5 Retaining only the first two terms in the formula (13.2.6), show that

Yo —8yry +8yy —y3
12h '

f'(x5) =~
Hence compute from following table the value of the derivative of y = e” at z = 1.15 :
x 1.05 1.10 1.15 1.20 1.25
e® 28577 3.0042 3.1582 3.3201 3.4903
Exercise 13.2.6 Following table gives the values of y = f(z) at the tabular points x = 0 + 0.05 x k,
k=0,1,2,34,5.

x 0.00 0.05 0.10 0.15 0.20 0.25
y 0.00000 0.10017 0.20134 0.30452 0.41075 0.52110

Compute (i)the derivatives y/ and y// at © = 0.0 by using the formula (13.2.2). (ii)the second derivative y//
at z = 0.1 by using the formula (13.2.6).



232 CHAPTER 13. NUMERICAL DIFFERENTIATION AND INTEGRATION
Similarly, if we have tabular points which are not equidistant, one can use Lagrange’s interpolating
polynomial, which is differentiated to get an estimate of first derivative. We shall see the result for
four tabular points and then give the general formula. Let zq, z1, z2, x5 be the tabular points, then the

corresponding Lagrange’s formula gives us:
o) o~ Eow)E—w)(@—ws) o (@ —wo)(w — @)@ —28) o0
f@) (zo — z1)(z0 — m2)(z0 — IS)f( o)+ (z1 —zo)(z1 — m2)(21 — l”S)f( )
(x — zo)(x — z1)(z — x3) Fs) + (z —zo)(z — 1) (z — x2) F(ws)

(w2 — wo) (2 — 1) (z2 — 73) (w3 — wo) (23 — 1) (w3 — 22)

Differentiation of the above interpolating polynomial gives:
@) @oz)@—z)+ @)@ —2s)+ (@)@ =25)
dz (zo — 21)(mo — @2)(wo — 3)

(x—x2)(x —@3) + (x — @0)(x — x2) + (x — @0)(x — @3)

(1 — wo)(z1 — z2) (71 — T3) fe)
(z—z1)(@ —@2) + (x —wo)(x — x1) + (x — wo)(x — x3)

(23 — 20)(w2 — 21) (@3 — 23) fle)
(z —z1)(x —22) + (z —x0)(z —22) + (T —@wo) (¥ — 1) ,

(3 — wo) (x5 — 1) (w3 — T2) f(@s)

T 2 f(i) - 1
= ([Me-=)) |3 . > wll (13.2.7)
=0 =0 (z—z) ] (@i—ax;) \k=0, ki k

=0, j#i

—+

+

—+

In particular, the value of the derivative at x = x is given by

ﬁ 1 1 1 (w() — wz)(wo — wg)
@, e ot G ) G ey )
(zo — 1) (w0 — w3) (zo — 1) (w0 — @) [
(22— 20)(wa — ) (za —a2)? 2 T (s —wo)@s — en(ws —wa)? )
Now, generalizing Equation (13.2.7) for n 4 1 tabular points xg,z1,- - ,z, we get:
df - - f(zq) - 1
- = (x—ar) o
e 1:[ ; (@—2) I (wi—w) (—; (== m)
=0, j#i

Example 13.2.7 Compute from following table the value of the derivative of y = f(z) at x = 0.6 :

x 0.4 0.6 0.7
y 3.3836494 4.2442376 4.7275054

Solution: The given tabular points are not equidistant, so we use Lagrange's interpolating polynomial with
three points: o = 0.4,z1 = 0.6, z5 = 0.7 . Now differentiating this polynomial the derivative of the function

at z = x; is obtained in the following form:

daf (z1 — z2) Flwo) + [ 1 N 1 )] Fla) + : (z1 — o) Fas).

dz (o — 1) (z0 — 22) (x1 —22) (21 —mo T2 — xo) (T2 — 1)

T=xq
Note: The reader is advised to derive the above expression.

Now, using the values from the table, we get:

df (0.6 - 0.7) 1 1
4 3.3836494 1.2442376
|, o (04-06)04-07) + [(0.6 ~07) " (06-04)] "~

(06— 04) X 4.7225054

07— 04)0.7—006)
= —5.63941567 — 21.221188 + 31.48336933 = 4.6227656.
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For the sake of comparison, it may be pointed out here that the above table is for the function f(z) = 2e®*+z,
and the value of its derivative at x = 0.6 is 4.6442376.

Exercise 13.2.8 For the function, whose tabular values are given in the above example(13.2.8), compute the

value of its derivative at z = 0.5.

Remark 13.2.9 It may be remarked here that the numerical differentiation for higher derivatives does

not give very accurate results and so is not much preferred.

13.3 Numerical Integration

b
Numerical Integration is the process of computing the value of a definite integral, [ f(z)dz, when

the values of the integrand function, y = f(z) are given at some tabular points. Ag in the case of
Numerical differentiation, here also the integrand is first replaced with an interpolating polynomial,
and then the integrating polynomial is integrated to compute the value of the definite integral. This
gives us 'quadrature formula’ for numerical integration. In the case of equidistant tabular points, either
the Newton’s formulae or Stirling’s formula are used. Otherwise, one uses Lagrange’s formula for the

interpolating polynomial. We shall consider below the case of equidistant points: xg,x1, -, Zy.

13.3.1 A General Quadrature Formula

Let f(zx) = yr be the nodal value at the tabular point zy for k¥ = 0,1, -, x,, where o = a and
T, = xg + nh = b. Now, a general quadrature formula is obtained by replacing the integrand by

Newton’s forward difference interpolating polynomial. Thus, we get,

b
A A2 A3
[1@ar = [ i+ S0 o)+ G20~ ) — o) + e~ 20)a ) — 2
Alyp

A

(r —zo)(x —21)(x — 22) (T —23) + -+ - | dox

This on using the transformation x = z¢ + hu gives:

b n
/f(:c)d:c - h/ [yo—kuAyo—k A;you(u—l)+ A;you(u—l)(u—2)
0

a

A4yo

AT

u(u—l)(u—2)(u—3)+---] du

which on term by term integration gives,

2 2 3 2 3 4
/f(x)dx = h {nyo + %Ayo + A2'yo <% - %) + Ag'yo <% —n3 4+ n2>

Al 5 3n*  11nd
N 4'yo (%_%Jr 3" _3n2>+...] (13.3.1)

a

For n =1, i.e., when linear interpolating polynomial is used then, we have

b
/f(:z:)d:z: =h [yo + %] = g [yo + v1] - (13.3.2)

a
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Similarly, using interpolating polynomial of degree 2 (i.e. n = 2), we obtain,

8 4\ A?
/f(ﬂf)dfﬂ = h {21/0 +2Ayo + (— - _> yo]
3 2 2
1 — 2y + h
= 2h {yo + (y1 —yo) + 3 X W] =3 [yo + 4y1 + y2] - (13.3.3)

In the above we have replaced the integrand by an interpolating polynomial over the whole interval
[a,b] and then integrated it term by term. However, this process is not very useful. More useful
Numerical integral formulae are obtained by dividing the interval [a,b] in n sub-intervals [z, Xg41],

where, x = xg + kh for k=0,1,--- ,n with xg = a,x, = xg +nh =b.

13.3.2 Trapezoidal Rule

Here, the integral is computed on each of the sub-intervals by using linear interpolating formula, i.e. for

n =1 and then summing them up to obtain the desired integral.

Note that
/bf(x)dx = 7f(x)dx + 7f(x)dx + 7 flz)dx + -+ x]lf(a:)dx

Now using the formula ( 13.3.2) for n = 1 on the interval [z, Zg+1], we get,

Tk+1

Fle)de = 5 o+ yi]

Thus, we have,

b

h h h h h
/f(f)dl’z5[yo+y1]+§[y1+y2]+"'+5[yk+yk+1]+"'+§[yn—2+yn—1]+§[yn—1+yn]

a
i.e.
b

h
/f(ﬁ)dw = §[yo+2y1+2y2+---+2yk+---+2yn_1+yn]

a

= h

n—1
y0'+'yn
=+ Z; y] : (13.3.4)

This is called TRAPEZOIDAL RULE. It is a simple quadrature formula, but is not very accurate.

Remark 13.3.1 An estimate for the error E; in numerical integration using the Trapezoidal rule is

given by
b—a——

= 2
121 192 A Y,

where A2y is the average value of the second forward differences.
Recall that in the case of linear function, the second forward differences is zero, hence, the Trapezoidal

rule gives exact value of the integral if the integrand is a linear function.
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1
Example 13.3.2 Using Trapezoidal rule compute the integral [ e””2d:c7 where the table for the values of y =
0

T 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.00000 1.01005 1.04081 1.09417 1.17351 1.28402 1.43332 1.63231 1.89648 2.2479 2.71828
Solution: Here, h = 0.1, n = 10,

2. .
e” is given below:

and

9
> i =12.81257.

=1

Thus,

1
/ez2dx = 0.1 x [1.85914 + 12.81257] = 1.467171
0

13.3.3 Simpson’s Rule

If we are given odd number of tabular points,i.e. n is even, then we can divide the given integral of
integration in even number of sub-intervals [xay, Zax+2]. Note that for each of these sub-intervals, we have
the three tabular points xok, Tog+1, T2k+2 and so the integrand is replaced with a quadratic interpolating

polynomial. Thus using the formula (13.3.3), we get,

T2k+2

h
f(z)dr = 3 [y2r + 4y2k+1 + Y2rt2] -

In view of this, we have

b

/f(a:)dx _

a

T2k+2

/ fl@)dz + -+ 7f(x)dx

T2k

f@ys + [ fa)do o+

[(yo +4y1 +y2) + (Y2 +4ys +ya) + -+ (Yn—2 + 4Yn—1 + Yn)]

= w| > §\g

= —wo+4y1 +2y2+4ys +2ys+ -+ 2yn—2 + 4yn—1 + Ynl,

w

which gives the second quadrature formula as follows:

b

h
J e R e A SR )
+2xX (Yot yat+ Yo+ A Yno2)]
h n—1 n—2
= S|ty tax | D wi|+2x | > w||.  (1335)
i=1, i—odd 1=2, i—even

This is known as SIMPSON’S RULE.

Remark 13.3.3 An estimate for the error F5 in numerical integration using the Simpson’s rule is given

by
b— a—o
Ey=— AT 13.3.
2 50 A, (13.3.6)

where A%y is the average value of the forth forward differences.
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Example 13.3.4 Using the table for the values of y = e®” asis given in Example 13.3.2, compute the integral
1
fe””zd:r, by Simpson'’s rule. Also estimate the error in its calculation and compare it with the error using

0
Trapezoidal rule.
Solution: Here, h = 0.1, n = 10, thus we have odd number of nodal points. Further,

9

Yo + y10 = 1.0 + 2.71828 = 3.71828, > yi=u1+ys+ys+yr+yo=T7.26845,
i=1, i—odd

and
8

i=2, i—even
Thus,
/em2dx = % X [3.71828 + 4 x 7.268361 + 2 x 5.54412] = 1.46267733
0
To find the error estimates, we consider the forward difference table, which is given below:
T Yi Ay; AQ% Agyi A4yi
0.0 1.00000 0.01005 0.02071 0.00189 0.00149
0.1 1.01005 0.03076 0.02260 0.00338 0.00171
0.2 1.04081 0.05336 0.02598 0.00519 0.00243
0.3 1.09417 0.07934 0.03117 0.00762 0.00320
0.4 117351 0.11051 0.3879 0.01090 0.00459
0.5 1.28402 0.14930 0.04969 0.01549 0.00658
0.6 1.43332 0.19899 0.06518 0.02207 0.00964
0.7 1.63231 0.26417 0.08725 0.03171
0.8 1.89648 0.35142 0.11896
0.9 224790 0.47038

1.0 2.71828
Thus, error due to Trapezoidal rule is,
1—0——-
E1 = — 12OA2y
_ 1 » 0.02071 + 0.02260 + 0.02598 + 0.03117 + 0.03879 + 0.04969 + 0.06518 + 0.08725 + 0.11896
12 9

—0.004260463.

Similarly, error due to Simpson's rule is,

1— 0
E, = - Al
2 180 — 7
_ 1 0.00149+0.00171 + 0.00243 4 0.00328 + 0.00459 + 0.00658 +- 0.00964
T 180 7

—92.35873 x 1072,

It shows that the error in numerical integration is much less by using Simpson's rule.

1
Example 13.3.5 Compute the integral [ f(z)dz, where the table for the values of y = f(z) is given below:
0.05
T 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 0.0785 0.1564 0.2334 0.3090 0.4540 0.5878 0.7071 0.8090 0.8910 0.9511 0.9877 1.0000

Solution: Note that here the points are not given to be equidistant, so as such we can not use any of

the above two formulae. However, we notice that the tabular points 0.05,0.10,0, 15 and 0.20 are equidistant
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and so are the tabular points 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1.0. Now we can divide the interval in two
subinterval: [0.05,0.2] and [0.2,1.0]; thus,

/1 f(2)dz = 72 f(z)da + /1 f(z)da
0.2

0.05 0.05

. The integrals then can be evaluated in each interval. We observe that the second set has odd number of
points. Thus, the first integral is evaluated by using Trapezoidal rule and the second one by Simpson's rule
(of course, one could have used Trapezoidal rule in both the subintervals).

For the first integral h = 0.05 and for the second one h = 0.1. Thus,

0.2
0.0785 + 0.3090
f(x)dz = 0.05 x [+ +0.1564 + 0.2334} = 0.0291775,
0.05
r 0.1
and /f(x)dx = ? x [(0.3090 + 1.0000) + 4 x (0.4540 + 0.7071 + 0.8910 + 0.9877)
0.2
+2 % (0.5878 + 0.8090 + 0.9511)}
= 0.6054667,

which gives,

/ f(z)dz = 0.0291775 + 0.6054667 = 0.6346442

0.05
It may be mentioned here that in the above integral, f(z) = sin(nz/2) and that the value of the integral
is 0.6346526. It will be interesting for the reader to compute the two integrals using Trapezoidal rule and
compare the values.

b
Exercise 13.3.6 1. Using Trapezoidal rule, compute the integral [ f(z)dx, where the table for the values

a
of y = f(x) is given below. Also find an error estimate for the computed value.

@) *© a=1 2 3 4 5 6 7 8 9 b=10
y 0.09531 0.18232 0.26236 0.33647 0.40546 0.47000 0.53063 0.58779 0.64185 0.69314
(b) r a=1.50 1.55 1.60 1.65 1.70 1.75 b=1.80
y 0.40546 0.43825 0.47000 0.5077 0.53063 0.55962 0.58779
(0) r a=1.0 15 2.0 25 3.0 b=35
y 11752 21293 3.6269 6.0502 10.0179 16.5426

b
2. Using Simpson’s rule, compute the integral [ f(z)dz. Also get an error estimate of the computed
a

integral.

(a) Use the table given in Exercise 13.3.6.1b.
(b) r a=05 10 1.5 2.0 25 30 b=35

y 0.493 0946 1.325 1.605 1.778 1.849 1.833
1.5
3. Compute the integral [ f(z)dz, where the table for the values of y = f(z) is given below:
0

x 00 05 07 09 11 12 13 14 15
y 000 039 077 127 190 226 265 3.07 353
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Chapter 14

Appendix

14.1 System of Linear Equations

Theorem 14.1.1 (Existence and Non-existence) Consider a linear system Ax = b, where A isa m xn
matrix, and x, b are vectors with orders n x 1, and m x 1, respectively. Suppose rank (4) = r and
rank([A b]) = r,. Then exactly one of the following statement holds:

1. if r, =r < n, the set of solutions of the linear system is an infinite set and has the form
{uwg+kius +koua + -+ kppup_pr : keR 1<i<n—r}
where ug, uy, ..., u,_, are n X 1 vectors satisfying Aug = b and Au; =0for1 <i<n-—r.
2. if r, =7 = n, the solution set of the linear system has a unique n x 1 vector xq satisfying Axy = 0.
3. If r <rg, the linear system has no solution.

PROOF. Suppose [C d] is the row reduced echelon form of the augmented matrix [A b]. Then
by Theorem 2.3.4, the solution set of the linear system [C' d] is same as the solution set of the linear

system [A b]. So, the proof consists of understanding the solution set of the linear system Cx = d.

1. Let r =r, < n.

Then [C' d] has its first » rows as the non-zero rows. So, by Remark 2.4.5, the matrix C' = [¢;]
has 7 leading columns. Let the leading columns be 1 < iy < iy < --- < i, < n. Then we observe
the following:

(a) the entries ¢;;, for 1 < < r are leading terms. That is, for 1 <[ < r, all entries in the i}h

column of C'is zero, except the entry c;,. The entry ¢, = 1;
(b) corresponding is each leading column, we have r BASIC VARIABLES, T;,, Tiy,- - -, Tj,;
(c) the remaining n — r columns correspond to the n — r FREE VARIABLES (see Remark 2.4.5),

iy, Tjy, .-+ Tj,_,.. S0, the free variables correspond to the columns 1 < j; < jo < --- <

Jn—r <M.

For 1 <1 <, consider the 1*h vow of [C d]. The entry ¢;;, = 1 and is the leading term. Also, the

first r rows of the augmented matrix [C' d] give rise to the linear equations

n—r

T + ZCljkxjk =d;, for 1<I<r
k=1

9920
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These equations can be rewritten as

n—r
X, =dj — chjk:xjk =d;, for 1<Ii<r.
k=1

Let y' = (@iy,..., @i, Zj,...,xj, ). Then the set of solutions consists of
- e -
P N i DR VA
i k=1
n—r
Ty,
y = = |dr — 32 crjmy | . (14.1.1)
Z; k=1
J1
Tj1
EZm—
xj"l*’r -

As z;, for 1 < s < n—r are free variables, let us assign arbitrary constants ks, € R to z;_. That is,

for1 <s<n-—r, x; =k, Then the set of solutions is given by

di— > e, di = > c1j ks
s=1 s=1
y = dr — i Crj Ty, | = |dr — i Crj ks
s=1 s=1
$j1 ]Cl
L Ljn—r i L kn—r
dy C1j, Cljs Cljp_r
d’!‘ C’I‘jl C”‘jQ c"‘jnfT
0 -1 0 0
= _kl _k2 _"'_kn—r
0 0 -1 0
0 0 0 0
0 0 0 -1
Let us write vo! = (d,dsa, ..., d,,0,...,0)t. Also, for 1 <i <n—r, let v; be the vector associated

with k; in the above representation of the solution y. Observe the following:
(a) if we assign ks =0, for 1 < s <n-—r, we get
Cvp=Cy=d. (14.1.2)
(b) if we assign k; =1 and ks =0, for 2 < s <mn—r, we get
d=Cy=C(vo+v1). (14.1.3)

So, using (14.1.2), we get Cvy = 0.

(c) in general, if we assign k; = 1 and ks =0, for 1 < s#t <n—r, we get
d=Cy=C(vo+ vi). (14.1.4)

So, using (14.1.2), we get Cvy = 0.
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Note that a rearrangement of the entries of y will give us the solution vector x! = (x1, xa,...,z,)".
Suppose that for 0 < ¢ < n — r, the vectors u;’s are obtained by applying the same rearrangement
to the entries of v;’s which when applied to y gave x. Therefore, we have Cuy = d and for

1<i<n—r, Cu; =0. Now, using equivalence of the linear system Ax = b and Cx = d gives
Aug=b andfor 1<i<n-—r, Au;, =0.
Thus, we have obtained the desired result for the case r = r; < n.

2. r=rs=n, m>n.

Here the first n rows of the row reduced echelon matrix [C' d] are the non-zero rows. Also, the
number of columns in C equals n = rank (A) = rank (C). So, by Remark 2.4.5, all the columns
of C' are leading columns and all the variables x1,z9,...,z, are basic variables. Thus, the row

reduced echelon form [C' d] of [A b] is given by
I, d
0 of

Therefore, the solution set of the linear system Cx = d is obtained using the equation I,,x = d.

C d =

This gives us, a solution as xg = d. Also, by Theorem 2.4.11, the row reduced form of a given
matrix is unique, the solution obtained above is the only solution. That is, the solution set consists

of a single vector d.

3. r<rg.

As C has n columns, the row reduced echelon matrix [C' d] has n + 1 columns. The condition,

r < 1o implies that r, = r 4+ 1. We now observe the following:

(a) as rank(C) = r, the (r + 1)th row of C' consists of only zeros.

(b) Whereas the condition r, = r 4+ 1 implies that the (r + 1)th row of the matrix [C' d] is

non-zero.

Thus, the (r + l)th row of [C' d] is of the form (0,...,0,1). Or in other words, d,+1 = 1.

Thus, for the equivalent linear system Cx = d, the (r + l)th equation is
Oz1+020+---+0x, =1.

This linear equation has no solution. Hence, in this case, the linear system C'x = d has no solution.
Therefore, by Theorem 2.3.4, the linear system Ax = b has no solution.

We now state a corollary whose proof is immediate from previous results.

Corollary 14.1.2 Consider the linear system Ax = b. Then the two statements given below cannot hold
together.

1. The system Ax = b has a unique solution for every b.

2. The system Ax = 0 has a non-trivial solution.
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14.2 Determinant

In this section, S denotes the set {1,2,...,n}.

Definition 14.2.1 1. A function o : S— S is called a permutation on n elements if ¢ is both one to one

and onto.

2. The set of all functions ¢ : S—S that are both one to one and onto will be denoted by S,,. That is,
Sy, is the set of all permutations of the set {1,2,...,n}.

1 2 ...
Example 14.2.2 1. In general, we represent a permutation o by o = " .
o(1) o(2) -+ o(n)

This representation of a permutation is called a TWO ROW NOTATION for o.

2. For each positive integer n, S, has a special permutation called the identity permutation, denoted Id,,,

n

such that Id, (i) =i for 1 <i <mn. Thatis, Id, = < - n )

3. Let n =3. Then
s 1 2 3 1 2 3 1 2 3
frnd T1 = 7': Ta =
3 ! 12 3 )7 13 2 )7 2 1 3 )’
1 2 3 12 3 1 2 3
_ _ — 14.2.5
i (2 3 1)’75 (3 1 2)’76 (3 2 1)}( )

Remark 14.2.3 1. Let 0 € §,,. Then o is determined if o(i) is known for i = 1,2,...,n. As o is
both one to one and onto, {c(1),0(2),...,0(n)} = S. So, there are n choices for o(1) (any element
of S), n — 1 choices for o(2) (any element of S different from o (1)), and so on. Hence, there are
n(n—1)(n—2)---3-2-1 = n! possible permutations. Thus, the number of elements in S,, is n!.
That is, |S,| = n!.

2. Suppose that o,7 € S,,. Then both o and T are one to one and onto. So, their composition map
o o7, defined by (o o 7)(i) = o(7(i)), is also both one to one and onto. Hence, o o7 is also a

permutation. That is, coT € S),.

3. Suppose o € S,,. Then o is both one to one and onto. Hence, the function c~' : S—=S defined
by o=*(m) = ¢ if and only if 0(¢) = m for 1 < m < n, is well defined and indeed o~! is also both

one to one and onto. Hence, for every element 0 € S,,, 0~ € S,, and is the inverse of .

1

4. Observe that for any o € S,,, the compositions cooc~ ! = o 1 oo = Id,.

Proposition 14.2.4 Consider the set of all permutations S,,. Then the following holds:

1. Fix an element 7 € S,,. Then the sets {oco7:0 € S,} and {700 : 0 € §,,} have exactly n! elements.
Or equivalently,
Sp={ro00:0€S8,}={ooT:0€S8,}.

2. S, ={0"t:0€ 8.}

PRrOOF. For the first part, we need to show that given any element o € S,,, there exists elements

€ S, such that & = 70 8 = v o 7. It can easily be verified that 8 =7"loa and v = ao 7L
y Y v y Y

For the second part, note that for any o € S,,, (¢7!)™! = 0. Hence the result holds. O
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Definition 14.2.5 Let 0 € S,,. Then the number of inversions of o, denoted n(o), equals

{@@,5) : i <g, o(i) > o(j) }-

Note that, for any o € S,,, n(0) also equals
> Ho() <a(i), for j=i+1,i+2,...,n}].
i=1

Definition 14.2.6 A permutation o € S,, is called a transposition if there exists two positive integers m,r €
{1,2,...,n} such that o(m) =r, o(r) =m and (i) =i for 1 <i#m,r < n.

For the sake of convenience, a transposition o for which o(m) = r, o(r) = m and o(i) = ¢ for
1 <i#m,r <n will be denoted simply by o = (m r) or (r m). Also, note that for any transposition
0g€S,, 07 =0. Thatis, c oo = Id,.
3
1

4
Example 14.2.7 1. The permutation 7 = A is a transposition as 7(1) = 3,7(3) =

1 2
3 2
1, 7(2) = 2 and 7(4) = 4. Here note that 7 = (1 3) = (3 1). Also, check that

2. Let 7 = 123456789 . Then check that
4 2 3 51 9 8 7 6

n(r)=3+14+1+14+0+3+2+1=12.

3. Let £,m and r be distinct element from {1,2,...,n}. Suppose 7 = (m r) and o = (m £). Then

(too)) = 7(c(0)) =7(m)=r, (roo)(m)=1(c(m)) =7()=1¢
(too)(r) = 7(o(r)) =7(r)=m, and (ro0)(i)=1(c(i)) =7(i) =1 ifi#l,;m,r

Therefore, Too = (mr)o (m{) = L2 b m ey " = (rl)o(rm).
1 2 oo p i 0 o m n
Similarly check that oo 7 = L2 e b eeeme e e )
1 2 .« e m PR T PR é “ e n

With the above definitions, we state and prove two important results.

Theorem 14.2.8 For any o € S,,, o can be written as composition (product) of transpositions.

PROOF. We will prove the result by induction on n(c), the number of inversions of . If n(c) = 0, then
o =1d, =(12)0o(12). So, let the result be true for all o € S,, with n(c) < k.

For the next step of the induction, suppose that 7 € S,, with n(7) = k£ + 1. Choose the smallest
positive number, say ¢, such that

7(i) =4, fori=1,2,...,0—1 and 7(¢) # L.

As 7 is a permutation, there exists a positive number, say m, such that 7(¢) = m. Also, note that m > £.
Define a transposition o by o = (¢ m). Then note that

(coT)(i) =4, fori=1,2,...,¢
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So, the definition of “number of inversions” and m > ¢ implies that

neor) = Y Hleor)(j) <(oor)i), for j=i+1,i+2,...,n}|
i=1
4

= Y Heor)(j) < (com)(i), for j=i+1i+2,. .. ,n}
=1

+ > {loon)(j) <(eor)(i), for j=i+1,i+2,...,n}
i=0+1

= Y Hleon)(j) <(com)(i), for j=i+1,i+2,...,n}|
i=0+1

Z {r(j) < 7(), for j=i+1,i+2,...,n} as m >/,
=41

IN

< (m-0+ > {r(j) <7(i), for j=i+1,i+2,...,n}
i=4+1
= n(r).

Thus, n(c o 7) < k + 1. Hence, by the induction hypothesis, the permutation o o 7 is a composition of

transpositions. That is, there exist transpositions, say a;, 1 <1 < ¢ such that
OOT=Q10Q20 "0 Q.

Hence, T =0oajoaso---0aq as 0 oo = Id, for any transposition ¢ € S,,. Therefore, by mathematical

induction, the proof of the theorem is complete. U

Before coming to our next important result, we state and prove the following lemma.

Lemma 14.2.9 Suppose there exist transpositions «;, 1 < i <t such that
Idn:OqOOQO”'OO[t,

then ¢ is even.

PRrROOF. Observe that ¢ # 1 as the identity permutation is not a transposition. Hence, t > 2. If t = 2,
we are done. So, let us assume that ¢ > 3. We will prove the result by the method of mathematical
induction. The result clearly holds for ¢t = 2. Let the result be true for all expressions in which the
number of transpositions ¢t < k. Now, let t = k + 1.

Suppose a; = (m r). Note that the possible choices for the composition a; o ap are

(mr)o(mr)=1Idn, (mr)o(me&)=(rf)o(rm), (mr)o(rf)={r)o(m)and (mr)o(ls)=(s)o(mr),

where ¢ and s are distinct elements of {1,2,...,n} and are different from m, r. In the first case, we
can remove a1 o as and obtain Id, = azoayq o -0 az. In this expression for identity, the number of
transpositions is t —2 = k — 1 < k. So, by mathematical induction, ¢t — 2 is even and hence t is also even.

In the other three cases, we replace the original expression for o o ag by their counterparts on the
right to obtain another expression for identity in terms of ¢ = k + 1 transpositions. But note that in the
new expression for identity, the positive integer m doesn’t appear in the first transposition, but appears
in the second transposition. We can continue the above process with the second and third transpositions.
At this step, either the number of transpositions will reduce by 2 (giving us the result by mathematical
induction) or the positive number m will get shifted to the third transposition. The continuation of this

process will at some stage lead to an expression for identity in which the number of transpositions is
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t —2 =k — 1 (which will give us the desired result by mathematical induction), or else we will have
an expression in which the positive number m will get shifted to the right most transposition. In the
later case, the positive integer m appears exactly once in the expression for identity and hence this
expression does not fix m whereas for the identity permutation Id,(m) = m. So the later case leads us
to a contradiction.
Hence, the process will surely lead to an expression in which the number of transpositions at some
stage is t — 2 = k — 1. Therefore, by mathematical induction, the proof of the lemma is complete.
O

Theorem 14.2.10 Let o € S,,. Suppose there exist transpositions 71, 72, ..., T, and 01, 02, ..., 0y such that
QX =T10T920--0T =010020:---00yp
then either k and /¢ are both even or both odd.

PROOF. Observe that the condition 7y om0 ---07;, = 01 0090---00y and 0 oo = Id, for any

transposition o € S,,, implies that
Id, =T0m0-- 0T, 00p00¢_10---007.

Hence by Lemma 14.2.9, k+ ¢ is even. Hence, either k and £ are both even or both odd. Thus the result
follows. O

Definition 14.2.11 A permutation o € S,, is called an even permutation if o can be written as a composition
(product) of an even number of transpositions. A permutation o € S, is called an odd permutation if o can

be written as a composition (product) of an odd number of transpositions.

Remark 14.2.12 Observe that if o and T are both even or both odd permutations, then the permu-
tations o o 7 and T o o are both even. Whereas if one of them is odd and the other even then the
permutations o o T and T o o are both odd. We use this to define a function on S, called the sign of a

permutation, as follows:

Definition 14.2.13 Let sgn: S,,—{1, —1} be a function defined by

1 if o is an even permutation
sgn(o) =

—1 if o is an odd permutation

Example 14.2.14 1. The identity permutation, Id,, is an even permutation whereas every transposition
is an odd permutation. Thus, sgn(Id,) = 1 and for any transposition o € S,,, sgn(o) = —1.

2. Using Remark 14.2.12, sgn(o o 7) = sgn(o) - sgn(7) for any two permutations 0,7 € S,,.

We are now ready to define determinant of a square matrix A.

Definition 14.2.15 Let A = [a;;] be an n X n matrix with entries from F. The determinant of A, denoted
det(A), is defined as

det(A) = Z Sgn(a)ala(l)a20(2) corlpg(n) = Z sgn(o) Haia(i)-
i=1

gES, ocES,

Remark 14.2.16 1. Observe that det(A) is a scalar quantity. The expression for det(A) seems
complicated at the first glance. But this expression is very helpful in proving the results related

with “properties of determinant”.
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2. If A = [a;] is a 3 x 3 matrix, then using (14.2.5),

3
det(4) =} sgn(o) [Jain)

ocES,
3 3 3
= sgn(n) H Qiry (i) + 580(T2) H Qiry (i) + 5g0(T3) H Qirg (3) T
i=1 i=1 i=1
3 3 3
sgn(74) H iry (i) + 580(T5) H Qirs (i) + 580(T6) H Gire (i)
i=1 i=1 i=1

= 011022033 — 011023032 — G12021G033 + 012023031 + G13021032 — 413022031 -

Observe that this expression for det(A) for a 3 x 3 matrix A is same as that given in (2.8.1).

14.3 Properties of Determinant

Theorem 14.3.1 (Properties of Determinant) Let A = [a,;] be an n x n matrix. Then

1.

10.

11

if B is obtained from A by interchanging two rows, then
det(B) = — det(A).

if B is obtained from A by multiplying a row by ¢ then
det(B) = cdet(A).

if all the elements of one row is 0 then det(A) = 0.
if A is a square matrix having two rows equal then det(A4) = 0.

Let B = [b;;] and C = [c;;] be two matrices which differ from the matrix A = [a;;] only in the mth

row for some m. If ¢yj = amj + by for 1 < j < n then det(C) = det(A) + det(B).

if B is obtained from A by replacing the fth row by itself plus k& times the mth row, for £ # m then
det(B) = det(A).

if A is a triangular matrix then det(A) = aj1a29 - - - anyp, the product of the diagonal elements.

. If E'is an elementary matrix of order n then det(EA) = det(E) det(A).

. Ais invertible if and only if det(A) # 0.

If Bis an n x n matrix then det(AB) = det(A) det(B).

det(A) = det(A?"), where recall that A’ is the transpose of the matrix A.

PrOOF. Proof of Part 1. Suppose B = [b;;] is obtained from A = [a,;] by the interchange of the ¢th

and m

throw. Then byj = amj, bmj =agj for 1 <j<nand by =a;5 for 1 <i#Lm<n, 1 <5< n.
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Let 7 = (¢ m) be a transposition. Then by Proposition 14.2.4, S,, = {oco7: ¢ € §,,}. Hence by the
definition of determinant and Example 14.2.14.2, we have

n

det(B) = > sgn(0) [[biwiy = Y. senloor) [ biwon
=1

€S, ooT€ES, i=1

= Z SgH(T) : sgn(a) bl(GOT)(l)bQ(GOT)(2) T bl(o’m’)(l) T bm(G’OT)(m) T bn(o’m’)(n)

coTES,

= SgH(’T) Z sgn(a) bla(l) : b20’(2) T bla’(m) T bma’(l) T bna’(n)
gES),

= - ( Z sgn((j) A1o(1) " A20(2) """ Amo(m) """ Ua(l) " * ana(n)) as Sgn(T) =-1
ceS,

= —det(4).

Proof of Part 2. Suppose that B = [b;;] is obtained by multiplying the mth row of A by ¢ # 0. Then
bmj =cCam; and bj; = a;; for 1 <i#m <n, 1 <j <n. Then

det(B) = Z Sgn(g)blo’(l)bQU@) T bma(m) t bna(n)
oES),

= Z Sgn(g)ald(l)a20(2) © CAma(m) * " Ano(n)
gES),

= ¢ Z Sgn(g)ald(l)a20(2) “ Ao (m) * 7 Ano(n)
oESH

= cdet(A).

Proof of Part 3. Note that det(A) = > sgn(0)ais(1)a25(2) - - - Gno(n)- S0, each term in the expression
ceS,
for determinant, contains one entry from each row. Hence, from the condition that A has a row consisting

of all zeros, the value of each term is 0. Thus, det(A) = 0.

Proof of Part 4. Suppose that the M and mth row of A are equal. Let B be the matrix obtained
from A by interchanging the o0 and mt rows. Then by the first part, det(B) = — det(A). But the
assumption implies that B = A. Hence, det(B) = det(A). So, we have det(B) = — det(A4) = det(A).
Hence, det(A) = 0.

Proof of Part 5. By definition and the given assumption, we have

det(C) = Z Sgn(a)cla(l)CQU(Q) " Cmo(m) " Cno(n)
oESy

= Z sgn((j)cla(l)c2o’(2) T (bma(m) + ama(m)) * " Cno(n)
oE€Sy

= Z sgn(a)bla(l)bQU@) c bma(m) t bna(n)
o€ESy

+ Z sgn((j)ala(l)a2a(2) “Omo(m) " Ano(n)
gES,

= det(B) + det(A).

Proof of Part 6. Suppose that B = [b;;] is obtained from A by replacing the ¢th row by itself plus k
times the mth row, for £ # m. Then by; = arj + k am; and by; = a5 for 1 <i#m <n, 1 <j < n.
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Then

det(B) = Z Sgn(a)bla’(l)bQU(Q) T bla(f) T bma’(m) T bna(n)
oES,

= Z sgn(a)ald(l)aQU(Q) T (afo'(f) + kama(m)) “Amo(m) * T Ano(n)
gES,

= Z Sgn(a)ala(l)a2o(2) Qo () T Gmo(m) T Ono(n)
oES,

+k Z Sgn(g)ald(l)a20(2) U Amo(m) T Amo(m) T Gno(n)
oES,

= Z Sgn(a)ala(l)a2o(2) Qo () T Gmo(m) T Ono(n) use Part 4
oES,

= det(A).

Proof of Part 7. First let us assume that A is an upper triangular matrix. Observe that if o € S,
is different from the identity permutation then n(c) > 1. So, for every o # Id,, € S,, there exists a
positive integer m, 1 < m < n — 1 (depending on o) such that m > o(m). As A is an upper triangular
Matrix, e (m) = 0 for each o(# Id,) € S,,. Hence the result follows.

A similar reasoning holds true, in case A is a lower triangular matrix.

Proof of Part 8. Let I, be the identity matrix of order n. Then using Part 7, det(l,) = 1. Also,
recalling the notations for the elementary matrices given in Remark 2.4.14, we have det(E;;) = —1,
(using Part 1) det(E;(c)) = ¢ (using Part 2) and det(E;;(k) = 1 (using Part 6). Again using Parts 1, 2
and 6, we get det(EA) = det(F) det(A).

Proof of Part 9. Suppose A is invertible. Then by Theorem 2.7.7, A is a product of elementary
matrices. That is, there exist elementary matrices E1, Fa, ..., Ex such that A = E1Fs--- Ex. Now a
repeated application of Part 8 implies that det(A) = det(F;)det(E2)---det(Fy). But det(E;) # 0 for
1 <i < k. Hence, det(A) # 0.

Now assume that det(A) # 0. We show that A is invertible. On the contrary, assume that A is
not invertible. Then by Theorem 2.7.7, the matrix A is not of full rank. That is there exists a positive

integer 7 < m such that rank(A) = r. So, there exist elementary matrices E1, Es,..., F} such that

E\Ey---E A= . Therefore, by Part 3 and a repeated application of Part 8,

det(Er) det(E2) - - det(Ey) det(A) = det(E1 By -+ Ey.A) = det ([ 0 ] ) )

But det(F;) # 0 for 1 < i < k. Hence, det(A) = 0. This contradicts our assumption that det(A) # 0.

Hence our assumption is false and therefore A is invertible.

Proof of Part 10. Suppose A is not invertible. Then by Part 9, det(A) = 0. Also, the product matrix
AB is also not invertible. So, again by Part 9, det(AB) = 0. Thus, det(AB) = det(A) det(B).

Now suppose that A is invertible. Then by Theorem 2.7.7, A is a product of elementary matrices.
That is, there exist elementary matrices E1, Fo,..., E; such that A = E1FE5--- E,. Now a repeated
application of Part 8 implies that

det(AB) = det(E1Es2---EyB) = det(Eq)det(Es) - - - det(Ey) det(B)
det(E1Ez - - Ey) det(B) = det(A) det(B).
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Proof of Part 11. Let B = [b;;] = A’. Then b;; = aj; for 1 <i,j < n. By Proposition 14.2.4, we know
that S, = {o71: 0 € 8,}. Also sgn(c) = sgn(oc~!). Hence,
det(B) = Z sgn(0)b15(1)b20(2) ** * bro(n)
oS,
= Z Sg 1 bo- 1(1)1ba*1(2)2"'ba*1(n)n
oS,
= Z sgn(0™")a1,-1(1)b2s-1(2) ** * buo—1(n)
oS,
= det(A).
U

Remark 14.3.2 1. The result that det(A) = det(A') implies that in the statements made in Theo-

rem 14.3.1, where ever the word “row” appears it can be replaced by “column”.

2. Let A = [a;;] be a matrix satisfying a11 = 1 and a1; = 0 for 2 < j < n. Let B be the submatrix
of A obtained by removing the first row and the first column. Then it can be easily shown that
det(A) = det(B). The reason being is as follows:
for every o € S,, with o(1) = 1 is equivalent to saying that o is a permutation of the elements
{2,3,...,n}. That is, o0 € S,—1. Hence,

det(A) = Z SgIl( )alo'(l)a20'(2) Ano(n) = Z SgH(U)QQO'@) *Ono(n)
cES, 0€S,,0(1)=1
= Z Sgn(g)bla(l) T bna(n) = det(B)
0€ESH -1

We are now ready to relate this definition of determinant with the one given in Definition 2.8.2.

Theorem 14.3.3 Let A be an n x n matrix. Then det(4) = Y (—1)'™ay; det(A(1[j)), where recall that

j=1

A(1]j) is the submatrix of A obtained by removing the 15 row and the jth column.
ProoF. For 1 < j < n, define two matrices
0 0 - ay -~ 0 a;j 0 0O --- 0
a1 Q22 -+ Q25 ccc Q2p a2; G21 Q@22 -+ Qop
B; = and C; =

an1  Aap2 - Anj - Qnn nxn Gnj An1  ap2 - Qnn nxn

Then by Theorem 14.3.1.5,
det(A) =)~ det(B;). (14.3.6)

We now compute det(B;) for 1 < j < n. Note that the matrix B; can be transformed into C; by j — 1
interchanges of columns done in the following manner:

first interchange the 15¢ and 21d ¢olumn, then interchange the o1d and 34 column and so on (the last
process consists of interchanging the (j — 1)th column with the jth column. Then by Remark 14.3.2
and Parts 1 and 2 of Theorem 14.3.1, we have det(B;) = a1;(—1)~! det(C}). Therefore by (14.3.6),

n n

det(A) =Y (=1)tay; det(A(1]5)) = Y (=1)" " ay; det(A(1]5)).

j=1 j=1
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14.4 Dimension of M + N

Theorem 14.4.1 Let V(F) be a finite dimensional vector space and let M and N be two subspaces of V.
Then

dim(M) 4+ dim(N) = dim(M + N) + dim(M N N). (14.4.7)
PROOF. Since M N N is a vector subspace of V, consider a basis B; = {uj,us,...,ux} of M N N.
As, M N N is a subspace of the vector spaces M and N, we extend the basis B; to form a basis
By ={ug,ug,...,uk,vi,...,v,.} of M and also a basis By = {uj,ua,...,ux, wi,...,ws} of N.
We now proceed to prove that that the set Bo = {uy,uz,...,ug, Wi,...,Ws, Vi, Va,..., V. } is a basis
of M + N.

To do this, we show that
1. the set B; is linearly independent subset of V., and
2. L(B2) =M + N.
The second part can be easily verified. To prove the first part, we consider the linear system of equations
ajuy + -+ opug + Swy + -+ Bswg vy - v = 0. (14.4.8)
This system can be rewritten as

aur + o+ /wr A+ Bewe = —(mvi - e ve).

The vector v.= —(yvi + -+ v.vy) € M, as vy,...,v,. € By But we also have v.= aju; + -+ +
apuyg + f1wy + - - + Bsws € N as the vectors uy, us, ..., ug, wi,...,ws € By. Hence, ve M NN and
therefore, there exists scalars d1,...,d; such that v = §1u; + dous + - - - + dpuy.

Substituting this representation of v in Equation (14.4.8), we get
(1 —d1)ur + -+ (ag — Sp)ug + iwr + - + Bsw, = 0.

But then, the vectors uj, us, ..., ug, Wi, ..., Wy are linearly independent as they form a basis. Therefore,

by the definition of linear independence, we get
o; —60; =0, for 1<i<k and 3; =0 for 1 <j <s.
Thus the linear system of Equations (14.4.8) reduces to
iy + -t apty + v e+ Ve = 0.
The only solution for this linear system is
a;=0, for 1<i<k and 7, =0 for 1<j<r.

Thus we see that the linear system of Equations (14.4.8) has no non-zero solution. And therefore,
the vectors are linearly independent.

Hence, the set By is a basis of M + N. We now count the vectors in the sets By, B, By and By to
get the required result. 0
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14.5 Proof of Rank-Nullity Theorem

Theorem 14.5.1 Let T : V—W be a linear transformation and {u1, usa,...,u,} be a basis of V' . Then
1. R(T) = L(T(u1), T(uz),...,T(un))-

2. T is one-one <= N (T') = {0} is the zero subspace of V <= {T'(w;) : 1 < i < n} is a basis of
R(T).

3. If V is finite dimensional vector space then dim(R(T")) < dim(V'). The equality holds if and only if
N(T) = {0}

PROOF. Part 1) can be easily proved. For 2), let T be one-one. Suppose u € N(T'). This means that
T(u) = 0 = T(0). But then T is one-one implies that u = 0. If N(T') = {0} then T'(u) = T'(v) <
T(u — v) = 0 implies that u = v. Hence, T is one-one.

The other parts can be similarly proved. Part 3) follows from the previous two parts. U

The proof of the next theorem is immediate from the fact that 7(0) = 0 and the definition of linear

independence/dependence.

Theorem 14.5.2 Let T : V—W be a linear transformation. If {T(uy),T(u2),...,T(uyn)} is linearly
independent in R(T") then {u1,us,...,u,} C V is linearly independent.

Theorem 14.5.3 (Rank Nullity Theorem) Let T : V—W be a linear transformation and V be a finite
dimensional vector space. Then

dim( Range(T)) + dim(N (7)) = dim(V),
or p(T) +v(T) =n.

ProoF. Let dim(V) = n and dim(N(T)) = r. Suppose {u1,us,...,u,} is a basis of N(T). Since

{u1,us,...,u,} is a linearly independent set in V, we can extend it to form a basis of V. Now there exists
vectors {u,41, Uri2, ..., u,} such that the set {u1, ..., up, trq1,...,un} is a basis of V. Therefore,
Range (T) = L(T(ur),T(u2),..., T(un)

= L(0,...,0,T(tps1), T(trs2),...,T(u))
= L(T(UT+1); T(ur+2)a e aT(uﬂ))

which is equivalent to showing that Range (7T') is the span of {T(ur+1),T(tr42)s .-, T (un)}.
We now prove that the set {T(ur41), T (Ur42),.-.,T (uy)} is a linearly independent set. Suppose the
set is linearly dependent. Then, there exists scalars, 41, @py2,. .., ay,, not all zero such that

1T (Urg1) + @ppoT(Ups2) + - + @ T (uy) = 0.

Or T(tp41Uri1+ Qpgotpgo+ -+ -+ @) = 0 which in turn implies o q1Ur+1 4+ Qpgotpyo+ -+ @y, €
N(T) = L(uq,...,u,). So, there exists scalars a;, 1 <4 < r such that

Qrp1Ur41 + Q4 2Upr42 + o apuy = arul + Qo + o A Q.

That is,

iUy + + Uy — Q1 Upgp — s — QU = 0.
Thus «; =0 for 1 <i < n as {ug,us,...,u,} is a basis of V. In other words, we have shown that the set
{T (ur41), T(ur42),...,T(un)} is a basis of Range (T'). Now, the required result follows. O

we now state another important implication of the Rank-nullity theorem.
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Corollary 14.5.4 Let T : V—V be a linear transformation on a finite dimensional vector space V. Then
T is one-one <= T is onto <= T has an inverse.

PrOOF. Let dim(V) = n and let T be one-one. Then dim(N (7)) = 0. Hence, by the rank-nullity
Theorem 14.5.3 dim( Range (T")) = n = dim(V'). Also, Range(T') is a subspace of V. Hence, Range(T) =
V. That is, T is onto.

Suppose T is onto. Then Range(T') = V. Hence, dim( Range (7')) = n. But then by the rank-nullity
Theorem 14.5.3, dim(N (T")) = 0. That is, T is one-one.

Now we can assume that 7' is one-one and onto. Hence, for every vector u in the range, there is a

unique vectors v in the domain such that 7'(v) = u. Therefore, for every u in the range, we define
T '(u) =v.

That is, T" has an inverse.

Let us now assume that 7" has an inverse. Then it is clear that T is one-one and onto. O

14.6 Condition for Exactness

Let D be a region in xy-plane and let M and N be real valued functions defined on D. Consider an
equation

M(z,y(z))dx + N(z,y(z))dy =0, (z,y(z)) € D. (14.6.9)

Definition 14.6.1 (Exact Equation) The Equation (14.6.9) is called Exact if there exists a real valued twice
continuously differentiable function f such that
of

of
%—M and a—y—N

Theorem 14.6.2 Let M and N be “smooth” in a region D. The equation (14.6.9) is exact if and only if
oM  ON
0y oz’

PrOOF. Let Equation (14.6.9) be exact. Then there is a “smooth” function f (defined on D) such that

M = 8—£ and N = g—’;. So, %—A; = ;;gx = ;jgy = %—]X and so Equation (14.6.10) holds.

Conversely, let Equation (14.6.10) hold. We now show that Equation (14.6.10) is exact. Define

G(z,y) on D by

(14.6.10)

Glay) = [ M)z + g0
where g is any arbitrary smooth function. Then %—g = M (z,y) which shows that

006G _0 oG _om _on
dr oy Oy O0x Oy  Ox’
So a%(N— %) =0or N — % is independent of z. Let ¢(y) = N — % or N=¢(y) + %. Now

M(x,y)—FN;l—z = ng [%4—9%)( )] Z—i
— 6+ 5 ( [ewa) where y = ()
_ %(f(x’y)) where f(z,y) :G(x,y)+/¢(y)dy
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